Question

In: Math

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the 1975 lean, which was 2.9644 meters, appears in the table as 644. Only the last two digits of the year were entered into the computer.

Year 75 76 77 78 79 80 81 82 83 84 85 86 87

Lean 644 646 657 668 675 690 698 700 715 718 726 743 759

(a) Plot the data. Consider whether or not the trend in lean over time appears to be linear. (Do this on paper. Your instructor may ask you to turn in this graph.) (b) What is the equation of the least-squares line? (Round your answers to three decimal places.) y = + x What percent of the variation in lean is explained by this line? (Round your answer to one decimal place.) % (c) Give a 99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean. (Round your answers to two decimal places.) ( , )

Solutions

Expert Solution

Independent variable, X: Year

Dependent variable, Y: Lean

(a)

(b)

Following is the output of regression analysis:

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.993013115
R Square 0.986075047
Adjusted R Square 0.984809142
Standard Error 4.530945876
Observations 13
ANOVA
df SS MS F Significance F
Regression 1 15991.40659 15991.40659 778.948808 1.46159E-11
Residual 11 225.8241758 20.52947053
Total 12 16217.23077
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%
Intercept -63.72527473 27.23334946 -2.339971983 0.03917423 -123.6654727 -3.785076746 -148.3067889 20.85623941
Year 9.373626374 0.335856053 27.90965438 1.4616E-11 8.634412185 10.11284056 8.330522455 10.41673029

The  equation of the least-squares line is

y' = 9.374x - 63.725

The percent of the variation in lean is explained by this line, the r-square, is

0.9861 or 98.61%

A 99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean is

(8.33, 10.42)


Related Solutions

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT