Question

In: Mechanical Engineering

Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 76 percent and that of the pump is 95 percent.

A: Determine the quality (or temperature, if superheated) of the steam at the turbine exit.

B: The thermal efficiency of the cycle.

C: The mass flow rate of the steam

Solutions

Expert Solution


Related Solutions

Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 78 percent and that of the pump is 95 percent. a.)Determine the quality (or temperature, if superheated) of the...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent,...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent, determine: (a) the pressure at...
A proposed steam power plant design consists of an ideal Rankine cycle with reheat and regeneration....
A proposed steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam enters Turbine 1 at P1 and T1 at the rate of m1 and exits at P2. A fraction (y') of the steam exiting Turbine 1 is diverted to an open feedwater heater while the remainder is reheated to T3 before entering Turbine 2. The condenser operates at P4. Saturated liquid exits the condenser and is fed to Pump 1. The outlet of Pump...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at 3 MPa and “648” K and is condensed in the condenser at a pressure of 46 kPa. You are assigned on a project to improve the thermal efficiency of this plant. a) Draw the schematic of the plant and determine the thermal efficiency of the practical cycle assuming that the efficiencies of pump and turbine are 0.75 and 0.7, respectively. ( b) Draw a...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net power output of 57 MW. The steam enters the turbine at 9 MPa and 575 ° C and exits at 150 ° C, then it is cooled in the condenser to a pressure of 100 kPa by means of the cooling water from a lake and that circulates through the condenser tubes to a rate of 1370 kg / s. Consider leaving the pump...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
A Rankine cycle with reheat produces 1 MW of net power. The boiler operates at 15...
A Rankine cycle with reheat produces 1 MW of net power. The boiler operates at 15 MPa and has an outlet temperature of 800 K. The condenser operates at atmospheric pressure (1 atm). The operating point of this cycle is such that the water exiting the low pressure turbine has no liquid present to prevent damageto the turbine (hint: what does this say about quality at this point?). Assume the pump and second turbine stage are both isentropic, but the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT