In: Math
Consider the following sample data for the relationship between advertising budget and sales for Product A: Observation 1 2 3 4 5 6 7 8 9 10 Advertising ($) 40,000 50,000 50,000 60,000 70,000 70,000 80,000 80,000 90,000 100,000 Sales ($) 240,000 308,000 315,000 358,000 425,000 440,000 499,000 494,000 536,000 604,000 What is the slope of the "least-squares" best-fit regression line? Please round your answer to the nearest hundredth. Note that the correct answer will be evaluated based on the full-precision result you would obtain using Excel.
Line of Regression Y on X i.e Y = bo + b1 X | ||||
X | Y | (Xi - Mean)^2 | (Yi - Mean)^2 | (Xi-Mean)*(Yi-Mean) |
40000 | 240000 | 841000000 | 33087610000 | 5275100000 |
50000 | 308000 | 361000000 | 12973210000 | 2164100000 |
50000 | 315000 | 361000000 | 11427610000 | 2031100000 |
60000 | 358000 | 81000000 | 4083210000 | 575100000 |
70000 | 425000 | 1000000 | 9610000 | 3100000 |
70000 | 440000 | 1000000 | 327610000 | 18100000 |
80000 | 499000 | 121000000 | 5944410000 | 848100000 |
80000 | 494000 | 121000000 | 5198410000 | 793100000 |
90000 | 536000 | 441000000 | 13018810000 | 2396100000 |
100000 | 604000 | 961000000 | 33160410000 | 5645100000 |
calculation procedure for regression
mean of X = sum ( X / n ) = 69000
mean of Y = sum ( Y / n ) = 421900
sum ( (Xi - Mean)^2 ) = 3290000000
sum ( (Yi - Mean)^2 ) = 119230900000
sum ( (Xi-Mean)*(Yi-Mean) ) = 19749000000
b1 = sum ( (Xi-Mean)*(Yi-Mean) ) / sum ( (Xi - Mean)^2 )
= 19749000000 / 3290000000
= 6.0027
bo = sum ( Y / n ) - b1 * sum ( X / n )
bo = 421900 - 6.0027*69000 = 7711.2462
value of regression equation is, Y = bo + b1 X
Y'=7711.2462+6.0027* X
slope of the equation is 6.0027,
the above equation compare with y = m*x +c here, m is the slope of
the equation