Question

In: Mechanical Engineering

The state at the beginning of compression of an air-standard Diesel cycle is fixed by p1...

The state at the beginning of compression of an air-standard Diesel cycle is fixed by p1 = 100 kPa and T1 = 310 K. The compression ratio is 18 and the cutoff ratio is 1.5.


Determine:

(a) the maximum temperature, in K.

(b) the pressure at the end of the expansion, in kPa.

(c) the net work per unit mass of air, in kJ/kg.

(d) the percent thermal efficiency.

Solutions

Expert Solution

In this problem, first Calculate the temperature at each state of the cycle with different equation for different process then Calculate the heat addition, heat rejection, net work and Thermal efficiency as below:


Related Solutions

The state at the beginning of compression of an air-standard Diesel cycle is fixed by p1...
The state at the beginning of compression of an air-standard Diesel cycle is fixed by p1 = 100 kPa and T1 = 310 K. The compression ratio is 18 and the cutoff ratio is 1.5. Determine: (a) the maximum temperature, in K. (b) the pressure at the end of the expansion, in kPa. (c) the net work per unit mass of air, in kJ/kg. (d) the percent thermal efficiency
An air-standard dual cycle has a compression ratio of 14. At the beginning of compression, p1...
An air-standard dual cycle has a compression ratio of 14. At the beginning of compression, p1 = 14.5 lbf/in.2, V1 = 0.5 ft3, and T1 = 50°F. The pressure doubles during the constant-volume heat addition process. For a maximum cycle temperature of 3500°R, determine: (a) the heat addition to the cycle, in Btu. (b) the net work of the cycle, in Btu. (c) the percent thermal efficiency. (d) the mean effective pressure, in lbf/in.2
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.0 L. Determine per cylinder: a)    the volume at state 1. b)    the air mass per cycle. c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.6 L. Determine per cylinder: a) the volume at state 1. (IN LITERS) I have tried 2.8L 0.945 L and 0.789 L but i keep getting it wrong. b) the air mass...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: a) the volume at state 1. b) the air mass per cycle. c) the heat addition per cycle, in kJ. d) the heat rejection per cycle, in...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.2 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 3.5 and the heat addition per unit mass of air is 1400 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar,...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar, T1 = 290 K, V1 = 400 cm3. The maximum temperature in the cycle is 2200 K and the compression ratio is 8. Determine (a) the heat addition, in kJ. kJ (b) the net work, in kJ. kJ (c) the thermal efficiency. % (d) the mean effective pressure, in bar. bar (e) Develop a full accounting of the exergy transferred to the air during...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 8.5 and the heat addition per unit mass of air is 1200 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT