In: Statistics and Probability
2. Use the methods below to normalize the following group of data: 150, 800, 640, 290, 2800
(a)min-max normalization by setting min = 0 and max = 1
(b) z-score normalization
(c) normalization by decimal scaling
Q.2) Given data as follows: 150, 800, 640, 290, 2800
minimum value = 150 and maximum value = 2800
a) min-max normalization by setting min = 0 and max = 1
Normalization for 150 is,
V' =[ ( 150 - 150) / (2800 - 150) ] * ( 1 - 0) + 0 = 0
Noralization for 800 is,
V' =[(800 - 150)/(2800 - 150) ] * (1 - 0) + 0 = 650/2650 = 0.2453
Similary we get for remaining data values,
Original Data | 150 | 800 | 640 | 290 | 2800 |
---|---|---|---|---|---|
[0,1] Normalized | 0 | 0.2453 | 0.1849 | 0.0528 | 1 |
b) z-score normalization
From given data, sample mean = 936 and population standard deviation = 960.8038
z-score is,
z-score for 150 is,
Similary we get z-scores for remaining data values,
Original Data | 150 | 800 | 640 | 290 | 2800 |
---|---|---|---|---|---|
Z-score | -0.82 | -0.14 | -0.31 | -0.67 | 1.94 |
c) Normalization by decimal scaling
For 150
V' = 150/103 = 150/1000 = 0.15
Similarly we get, nirmalization by decimal scaling for remaining data values,
Original Data | 150 | 800 | 640 | 290 | 2800 |
---|---|---|---|---|---|
Decimal Scaling | 0.15 | 0.80 | 0.64 | 0.29 | 0.28 |