Question

In: Statistics and Probability

using R :- A Gumbel random variable X has distribution function FX (x) = exp (−e^−x)....

using R :-

A Gumbel random variable X has distribution function

FX (x) = exp (−e^−x).

a) Give a graph of FX and explain using this plot why FX is a valid cumulative probability distri-

bution function.

(b) Find the values of the first and third quartiles and median X and show their values on the graph.

(c) Make a table of x and FX (x) for x equal to the integers from −2 to 5.

(d) Find the probabilities P{−1 < X ≤ 4} and P{4 < X}.

(e) Find the probability density for this distribution function.

(f) Provide a second sketch of the distribution function along with a sketch of the density function indicating P {−1 < X ≤4} on both pl

Solutions

Expert Solution

The distribution function of the Gumbel random variable is

a) The graph of is plotted below.

R code below.

curve(exp(-exp(-x)), xlim=c(-5,7),ylim = c(0,1), lwd=2, col = "blue", xlab="x", ylab = "F(x)")
abline(v=-log(log(4)), col = "green")
abline(v=-log(log(2)), col = "green")
abline(v=-log(log(4/3)), col = "green")

We see and . and is increasing. Hence

  is a valid cumulative probability distribution function

b) First quartile is such that

Third quartile is such that

Median is such that

The green lines in the graph are 25%, 50% and 75%.

c) The table is generated below.

> matrix(c(-2:5,exp(-exp((-2:5)))), nrow=8)
[,1] [,2]
[1,] -2 8.734230e-01
[2,] -1 6.922006e-01
[3,] 0 3.678794e-01
[4,] 1 6.598804e-02
[5,] 2 6.179790e-04
[6,] 3 1.892179e-09
[7,] 4 1.942338e-24
[8,] 5 3.507389e-65

d) The probability

e) The PDF is


Related Solutions

If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
1. Let X be a random variable with probability density function fX given by fX(x) =...
1. Let X be a random variable with probability density function fX given by fX(x) = γαγ/ (x + α)^γ+1 , x ≥ 0, 0, x < 0, where α > 0 and γ > 0. (a) Find the cumulative distribution function (cdf) FX of X. (b) Let Y = log(X+α /α) . Find the cdf of Y and identify the distribution. (c) How could a realisation of X be generated from an R(0,1) random number generator? (d) Let Z...
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ {...
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ { c.(4-x2), 0≤x≤2 0, otherwise where c is a constant. (a) Sketch fX (x) and find the constant c. (b) Find P (X > 1). (c) Suppose that somebody tells you {X > 1} occurred. Find the conditional pdf fX|{X>1}(x), the pdf of X given that {X > 1}. (d) Find FX(x), the cumulative distribution function of X. (e) Let Y = X2 . Find...
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
The probability density function of the random variable X is given by fX(x) = ax +...
The probability density function of the random variable X is given by fX(x) = ax + 2/9 if 1/2 ≤ x ≤ 3, and 0 otherwise. (a) Compute the value of a. (b) Let the random variable Y be defined as Y = [X], where [·] is the “round down” operator (that is, for example, [2.5] = 2, [−2.5] = −3, [−3] = −3). Find the probability mass function of Y . (Hint: For Y to take value k, what...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x|...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x| for all values of x, where c is a constant. Find the value of c and the cumulative distribution function of X.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT