Question

In: Statistics and Probability

You and a friend are playing a game. You alternate turns rolling a single die, and...

You and a friend are playing a game. You alternate turns rolling a single die, and the first person to roll a 1 or a 2 wins. Your friend goes first.

a. What’s the probability that the game ends in three rolls or fewer?

b. What’s the expected number of rolls?

c. What’s the probability that your friend wins?

Solutions

Expert Solution


Related Solutions

You and a friend are rolling a set of 8 dice. The game works such that...
You and a friend are rolling a set of 8 dice. The game works such that if a die shows the values 1, 2, 3, or 4 you will get a point for that die. Each die that shows 5 or 6 your friend will get a point for. Construct a probability model for a single roll of the dice then answer the following. Step 2 of 5: What is the probability that your friend will score 2 points? Step...
Suppose you are playing a game with a friend in which you bet ? dollars on...
Suppose you are playing a game with a friend in which you bet ? dollars on the flip of a fair coin: if the coin lands tails you lose your ? dollar bet, but if it lands heads, you get 2? dollars back (i.e., you get your ? dollars back plus you win ? dollars). Let ? = "the amount you gain or lose." (a) What is the expected return ?(?) on this game? (Give your answer in terms of...
6. You are playing a card game with a friend. You are using a new deck...
6. You are playing a card game with a friend. You are using a new deck of 52 playing cards and you’d like to calculate some probabilities to improve your game. (Remember, the total number of cards decreases by 1 every time you draw a card!) a. What is the probability of drawing three queen cards in a row? b. What is the probability of drawing all four aces in a row? c. What is the probability of drawing the...
6. You are playing a card game with a friend. You are using a new deck...
6. You are playing a card game with a friend. You are using a new deck of 52 playing cards and you’d like to calculate some probabilities to improve your game. (Remember, the total number of cards decreases by 1 every time you draw a card!) a. What is the probability of drawing three queen cards in a row? b. What is the probability of drawing all four aces in a row? c. What is the probability of drawing the...
Consider the game of rolling a fair die, and winning the face value if it is...
Consider the game of rolling a fair die, and winning the face value if it is 1, 2, 3, 4, or 5, and losing $14 if it rolls 6. Simulate this in Excel. One way would be to write "=trunc(rand()*6)+1" in A1, and write "=IF( A1=6 , -14, A1)" in B1 (i.e. if A1 is 6, value is -14, else, value is whatever A1 is). Copy the above row to five thousand rows below. Find the average of the value...
You are playing a dice game with your friend and he seems to be cheating (either...
You are playing a dice game with your friend and he seems to be cheating (either that or you are really bad at this game). You deduce that the dice is not fair. This is, you expect each of the outcomes to be equally likely, but they do not seem to be coming up that way. In order to prove your point, you record the outcomes of 120 different die rolls and obtain the following frequencies. Run a hypothesis test...
Peter and Mary take turns rolling a fair die. If Peter rolls 1 or 2 he...
Peter and Mary take turns rolling a fair die. If Peter rolls 1 or 2 he wins and the game stops. If Mary rolls 3, 4, 5, or 6, she wins and the game stops. They keep rolling in turn until one of them wins. Suppose Peter rolls first. (a) What is the probability that Peter wins? (b) What is the probability that Mary wins?
A new casino game involves rolling a die. The winnings are directly proportional to the result...
A new casino game involves rolling a die. The winnings are directly proportional to the result of the number rolled. Suppose a gambler plays the game 108 times, with the following observed counts: Observed Number, Observed Frequencies 1 6 2 12 3 24 4 27 5 9 6 30 The casino becomes suspicious of the gambler and wishes to determine whether the die is fair. What would you conclude at = 0:05? Is the test you adopt an exact test...
Two people are playing an exciting game in which they take turns removing marbles from a...
Two people are playing an exciting game in which they take turns removing marbles from a bag. At the beginning of the game, this bag contains some red marbles and some blue marbles. The bag is transparent so at any time during the game, the players know exactly how many red and how many blue marbles are in the bag. The players alternate taking turns. On a player’s turn, he or she must remove some marbles from the bag. The...
6.Geometry John is playing around with probabilities and thinking about rolling a die until he gets...
6.Geometry John is playing around with probabilities and thinking about rolling a die until he gets a 6. He computes that (5/6)4 is equal to 0.4823, and concludes, “Cool, I’ve got a better than 50% chance of seeing my first six by my fourth roll.” Then Geometry John wonders, “if I roll a die until I roll two sixes, do I have a better than 50% chance of seeing my second six by my eighth roll?” What is the answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT