Question

In: Statistics and Probability

Peter and Mary take turns rolling a fair die. If Peter rolls 1 or 2 he...

Peter and Mary take turns rolling a fair die. If Peter rolls 1 or 2 he wins and the game stops. If Mary rolls 3, 4, 5, or 6, she wins and the game stops. They keep rolling in turn until one of them wins. Suppose Peter rolls first.
(a) What is the probability that Peter wins? (b) What is the probability that Mary wins?

Solutions

Expert Solution


Related Solutions

Consider the experiment of rolling a six-sided fair die. Let X denote the number of rolls...
Consider the experiment of rolling a six-sided fair die. Let X denote the number of rolls it takes to obtain the first 5, Y denote the number of rolls until the first 2, and Z denote the number of rolls until the first 4. Numerical answers are needed only for parts (a) and (b). Expressions are sufficient for parts (c), (d), and (e). a) E[X|Y = 1 or Z = 1] b) E[X|Y = 1 and Z = 2] c)...
Peter rolls an 8 die and then Kate gets three chances to roll a 6-die and...
Peter rolls an 8 die and then Kate gets three chances to roll a 6-die and get greater number than whatever Pter rolled. What is the probability that at least one of Kate’s rolls is greater than what Peter's rolls?
Suppose you are rolling a fair four-sided die and a fair six-sided die and you are...
Suppose you are rolling a fair four-sided die and a fair six-sided die and you are counting the number of ones that come up. a) Distinguish between the outcomes and events. b) What is the probability that both die roll ones? c) What is the probability that exactly one die rolls a one? d) What is the probability that neither die rolls a one? e) What is the expected number of ones? f) If you did this 1000 times, approximately...
Consider rolling both a fair four-sided die numbered 1-4 and a fair six-sided die numbered 1-6...
Consider rolling both a fair four-sided die numbered 1-4 and a fair six-sided die numbered 1-6 together. After rolling both dice, let X denote the number appearing on the foursided die and Y the number appearing on the six-sided die. Define W = X +Y . Assume X and Y are independent. (a) Find the moment generating function for W. (b) Use the moment generating function technique to find the expectation. (c) Use the moment generating function technique to find...
Alice, Bob, and Charlie are rolling a fair die in that order. They keep rolling until...
Alice, Bob, and Charlie are rolling a fair die in that order. They keep rolling until one of them rolls a 6. What is the probability that each of them wins?
An experiment consists of rolling three fair dice --- a red die, a blue die, and...
An experiment consists of rolling three fair dice --- a red die, a blue die, and a white die --- and recording the number rolled on each die. Assume that the dice are fair, so that all outcomes are equally likely. (1) What probability should be assigned to each outcome? equation editorEquation Editor (2) What is the probability that the sum of the numbers rolled is 5? equation editorEquation Editor (3) What is the probability that the sum of the...
On each turn, bonnie is tossing a fair coin and Clyde is rolling a fair die....
On each turn, bonnie is tossing a fair coin and Clyde is rolling a fair die. They stop once Clyde rolls an odd number for the first time. Let X be the number of "Heads" that Bonnie's coin showed. a) Compute E[X] b) Compute var(X)
1. The experiment of rolling a fair six-sided die twice and looking at the values of...
1. The experiment of rolling a fair six-sided die twice and looking at the values of the faces that are facing up, has the following sample space. For example, the result (1,2) implies that the face that is up from the first die shows the value 1 and the value of the face that is up from the second die is 2. (1,1)       (1,2)       (1,3)       (1,4)       (1,5)       (1,6) (2,1)       (2,2)       (2,3)       (2,4)       (2,5)       (2,6) (3,1)       (3,2)       (3,3)       (3,4)       (3,5)       (3,6)...
Consider the game of rolling a fair die, and winning the face value if it is...
Consider the game of rolling a fair die, and winning the face value if it is 1, 2, 3, 4, or 5, and losing $14 if it rolls 6. Simulate this in Excel. One way would be to write "=trunc(rand()*6)+1" in A1, and write "=IF( A1=6 , -14, A1)" in B1 (i.e. if A1 is 6, value is -14, else, value is whatever A1 is). Copy the above row to five thousand rows below. Find the average of the value...
I want to test the hypothesis that a die is fair by rolling it over and...
I want to test the hypothesis that a die is fair by rolling it over and over, independently, until the third time I see any single number. I will conclude that the die is loaded (not fair) if it takes four or fewer rolls for any single number to come up three times. What is the significance level?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT