Question

In: Statistics and Probability

Let X~BIN(40,0.1). Let Y=max(0,x-3). FindE[Y].

Let X~BIN(40,0.1). Let Y=max(0,x-3). FindE[Y].

Solutions

Expert Solution

Since X is binomially distributed over (40,0.1), i calculated the distribution using calculation and table is given below:

Binomial distribution (n=40, p=0.1)
f(x)
x Pr[X = x]
0 0.0148
1 0.0657
2 0.1423
3 0.2003
4 0.2059
5 0.1647
6 0.1068
7 0.0576
8 0.0264
9 0.0104
10 0.0036
11 0.0011
12 0.0003
13 0.0001
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0

Now Y = max (0, x-3).

This means that,

Y = 0, for all x 3

Y = x-3. for all x 4

Y x P(x) Y*P(x)
0 0 0.0148 0
0 1 0.0657 0
0 2 0.1423 0
0 3 0.2003 0
1 4 0.2059 0.2059
2 5 0.1647 0.3294
3 6 0.1068 0.3204
4 7 0.0576 0.2304
5 8 0.0264 0.132
6 9 0.0104 0.0624
7 10 0.0036 0.0252
8 11 0.0011 0.0088
9 12 0.0003 0.0027
10 13 0.0001 0.001
11 14 0 0
12 15 0 0
13 16 0 0
14 17 0 0
15 18 0 0
16 19 0 0
17 20 0 0
18 21 0 0
19 22 0 0
20 23 0 0
21 24 0 0
22 25 0 0
23 26 0 0
24 27 0 0
25 28 0 0
26 29 0 0
27 30 0 0
28 31 0 0
29 32 0 0
30 33 0 0
31 34 0 0
32 35 0 0
33 36 0 0
34 37 0 0
35 38 0 0
36 39 0 0
37 40 0 0
Sum= 1.3182

Now E[Y] = Y * P(x)

E[Y] = 1.3182


Related Solutions

Let f (x, y) = c, 0 ≤ y ≤ 4, y ≤ x ≤ y...
Let f (x, y) = c, 0 ≤ y ≤ 4, y ≤ x ≤ y + 1,  be the joint pdf of X and Y. (a) (3 pts) Find c and sketch the region for which f (x, y) > 0. (b) (3 pts) Find fX(x), the marginal pdf of X. (c) (3 pts) Find fY(y), the marginal pdf of Y. (d) (3 pts) Find P(X ≤ 3 − Y). (e) (4 pts) E(X) and Var(X). (f) (4 pts) E(Y)...
Let f(x,y)= (3/2)(x^2+y^2 ) in 0≤x≤1, 0≤y≤1. (a) Find V(X) (b) Find V(Y)
Let f(x,y)= (3/2)(x^2+y^2 ) in 0≤x≤1, 0≤y≤1. (a) Find V(X) (b) Find V(Y)
. Let x, y ∈ R \ {0}. Prove that if x < x^(−1) < y...
. Let x, y ∈ R \ {0}. Prove that if x < x^(−1) < y < y^(−1) then x < −1.
f(x,y) = x^3+y^3-18xy Finding relative max and mins.
f(x,y) = x^3+y^3-18xy Finding relative max and mins.
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find:...
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find: 1 The pdf of Z=X+Y 2 The pdf of Z=X.Y
Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y...
Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y <= 1, 2*y <= x. (And 0 otherwise) Let the random variable W = X + Y. Without knowing the p.d.f of W, what interval of w values holds at least 60% of the probability?
Let X and Y be random variables. Suppose P(X = 0, Y = 0) = .1,...
Let X and Y be random variables. Suppose P(X = 0, Y = 0) = .1, P(X = 1, Y = 0) = .3, P(X = 2, Y = 0) = .2 P(X = 0, Y = 1) = .2, P(X = 1, Y = 1) = .2, P(X = 2, Y = 1) = 0. a. Determine E(X) and E(Y ). b. Find Cov(X, Y ) c. Find Cov(2X + 3Y, Y ).
1 Let f(x, y) = 4xy, 0 < x < 1, 0 < y < 1,...
1 Let f(x, y) = 4xy, 0 < x < 1, 0 < y < 1, zero elsewhere, be the joint probability density function(pdf) of X and Y . Find P(0 < X < 1/2 , 1/4 < Y < 1) , P(X = Y ), and P(X < Y ). Notice that P(X = Y ) would be the volume under the surface f(x, y) = 4xy and above the line segment 0 < x = y < 1...
G1. Let f(x, y) = 1 for 0 < x < 1 and x < y...
G1. Let f(x, y) = 1 for 0 < x < 1 and x < y < (x + 1); and 0 otherwise. Find the correlation coefficient for this X and Y . (Hint: the answer is p (1/2) = 0.7071. See if you know all of the steps needed to get there.)
Let X and Y be uniform random variables on [0, 1]. If X and Y are...
Let X and Y be uniform random variables on [0, 1]. If X and Y are independent, find the probability distribution function of X + Y
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT