Question

In: Physics

12. (a) Calculate the force needed to bring a 950-kg car to rest from a speed...


12. (a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

Solutions

Expert Solution

Solution:

Given data

distance(s) =120m

a) Use Torricelli's equation to find the acceleration:

we know that Force formula is

Here (-) indicates the opposite direction of motion

b) Similarily Use Torricelli's equation to find the acceleration:

we know that Force formula is

Comparing it with the force found in part (a) is

Acceleration in part-(a) is a=-2.6m/s2

Acceleration in part-(b) is b=-156m/s2

Therfore acceleration is 60 times as great when compared to part-(a) to part-(b).


Related Solutions

(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest...
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 25.0 km/h in a direction of 25 o with respect to the positive x axis. The heavier car moves at 28 km/h at -50 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? Also, What was the initial...
An elevator system in a tall building consists of a 800-kg car and a 950-kg counterweight...
An elevator system in a tall building consists of a 800-kg car and a 950-kg counterweight joined by a light cable of constant length that passes over a pulley of mass 280 kg. The pulley, called a sheave, is a solid cylinder of radius 0.700 m turning on a horizontal axle. The cable does not slip on the sheave. A number n of people, each of mass 80.0 kg, are riding in the elevator car, moving upward at 3.00 m/s...
A curve of radius 30 m is banked so that a 950 kg car travelling at...
A curve of radius 30 m is banked so that a 950 kg car travelling at 40 km/h can go round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction is 0.3, what is...
A 950 kg car turns around a curve of a radius 30 m on a level...
A 950 kg car turns around a curve of a radius 30 m on a level road. If the coefficient of static friction between the tires and the road is 0.55, how fast can the car go around the curve without sliding?
A toy car with a mass of 1 kg starts from rest at the top of a ramp at point A.
A toy car with a mass of 1 kg starts from rest at the top of a ramp at point A. The toy car is released from rest, rolls 2.0 meters down the ramp, then another 3.0 meters across the floor to point B where its speed is measured to be 4.24 m/s. The air exerts a resistance force of 2.0 N on the car as it moves from A to B. Find the initial height of the car at...
The 1500-kg truck reaches a speed of 50 km/h from rest in a distance of 60...
The 1500-kg truck reaches a speed of 50 km/h from rest in a distance of 60 m up the 10% incline with constant acceleration. Calculate the normal force under each pair of wheels and the effective coefficient of friction between the tires and the road during this motion.
A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s....
A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s. If the diameter of the tire is 58.0 cm, find (a) the number of revolutions the tire makes during the motion, assuming that no slipping occurs. (b) What is the final angular speed of a tire in revolutions per second?                                           Answer:  (54.3 rev, 12.1 rev/s) --> please show me how to get this answer!
Ferrari LaFerrari can speed up from rest to 60 mph in 2.4 seconds. What average force...
Ferrari LaFerrari can speed up from rest to 60 mph in 2.4 seconds. What average force is required to accelerate the vehicle if it's total weight is 3479 lb? Submit you answer in pounds. The average force, f =  . What distance does the car travel during the acceleration period? The traveled distance, d =
1.a) What is the (average) power needed to accelerate a car of mass m=1550 kg from...
1.a) What is the (average) power needed to accelerate a car of mass m=1550 kg from zero to 60 mph in 7.1 s? b) Which simplifications did you make in that short calculation, i.e. what did you neglect? 2.The current BC hydro rates are 6.55 cents per kWh. If you have a desktop computer that uses 200 W (on average), how much does it cost you per month to run it for 6 hours per day? 3. An elevator car...
A sports car of mass 1000 kg can accelerate from rest to 72. km/h in 6.6...
A sports car of mass 1000 kg can accelerate from rest to 72. km/h in 6.6 s. a) What would the average force of the car's engine be? b) If the same force acts on 2000 kg car what is the acceleration.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT