Question

In: Physics

The 1500-kg truck reaches a speed of 50 km/h from rest in a distance of 60...

The 1500-kg truck reaches a speed of 50 km/h from rest in a distance of 60 m up the 10% incline with constant acceleration. Calculate the normal force under each pair of wheels and the effective coefficient of friction between the tires and the road during this motion.

Solutions

Expert Solution


Related Solutions

A 1500 kg automobile travels at a speed of 85 km/h along a straight concrete highway....
A 1500 kg automobile travels at a speed of 85 km/h along a straight concrete highway. Faced with an emergency situation, the driver jams on the brakes, and the car skids to a stop. (a) What will be the car's stopping distance for dry pavement (µ = 0.85)? (b) What will be the car's stopping distance for wet pavement (µ = 0.60)?
A jet fighter is accelerated from rest to a takeoff speed of 262 km/h in a...
A jet fighter is accelerated from rest to a takeoff speed of 262 km/h in a distance of 91.5 m on an aircraft carrier. Assume constant acceleration. What is the acceleration of the fighter in m/s2? a = m/s2 Part B How long does it take the jet to reach take-off speed?
A roller coaster reaches the top of the steepest hill with a speed of 6.8 km/h...
A roller coaster reaches the top of the steepest hill with a speed of 6.8 km/h . It then descends the hill, which is at an average angle of 35 ∘ and is 45.0 m long. Q: What will its speed be when it reaches the bottom? Assume μk = 0.18.
A roller coaster reaches the top of the steepest hill with a speed of 6.80 km/h....
A roller coaster reaches the top of the steepest hill with a speed of 6.80 km/h. It then descends the hill, which is at an average angle of 35° and is 56.0 m long. What will its speed be when it reaches the bottom? Assume µk = 0.16.
A sports car of mass 1000 kg can accelerate from rest to 72. km/h in 6.6...
A sports car of mass 1000 kg can accelerate from rest to 72. km/h in 6.6 s. a) What would the average force of the car's engine be? b) If the same force acts on 2000 kg car what is the acceleration.
A curve of radius 40 m is banked for a design speed of 60 km/h. If...
A curve of radius 40 m is banked for a design speed of 60 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? minimum maximum
A 1210 kg car is driving on 60 km/h on an inclined plane. The car is...
A 1210 kg car is driving on 60 km/h on an inclined plane. The car is located on the top of the plane. The plane is 655 m long and the angle is 4.50 degrees. a) What will the speed of the car be if there is no friction ? b) Now the car is on 85 km/h at the bottom of the inclined plane. How much friction force works on the car its way down ? c) If the...
A 1500 kg car starts from rest and drives around a flat 50-m-diameter circular track. The...
A 1500 kg car starts from rest and drives around a flat 50-m-diameter circular track. The forward force provided by the car’s drive wheels is a constant 1000 N. A. What are the magnitude and direction of the car’s acceleration at t = 10 s? Give the direction as an angle from the r-axis. B. If the car has rubber tires and the track is concrete (use book or other reference to find coefficients of friction), at what time does...
A 3000 kg truck is driving along a straight road at a constant speed of 60...
A 3000 kg truck is driving along a straight road at a constant speed of 60 km/hr. A 800 kg car starts accelerating from stationary as the truck goes past it. Ignore air resistance. (a) How far has the truck travelled after 5 minutes? Give your answer in kilometres. -2 (b) If the car accelerates at 6 ms (c) How far will the car have travelled when it reaches this speed? (d) What is the force associated with of motion...
A motorcycle accelerates uniformly from rest and reaches a linear speed of 22.8 m/s in a...
A motorcycle accelerates uniformly from rest and reaches a linear speed of 22.8 m/s in a time of 8.64 s. The radius of each tire is 0.266 m. What is the magnitude of the angular acceleration of each tire?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT