Question

In: Computer Science

Show that the language ?={?^??^??^?:?≥0,?≥0}is not regular.

Show that the language ?={?^??^??^?:?≥0,?≥0}is not regular.

Solutions

Expert Solution


##### FOR ANY QUERY, KINDLY GET BACK, THANKYOU. #####


Related Solutions

Determine if the language ?={?^?∶?=?^3????????≥0}over Σ={?}is regular.
Determine if the language ?={?^?∶?=?^3????????≥0}over Σ={?}is regular.
Question 4 Prove that the following language is not regular. ? = { 0 ?1 ?...
Question 4 Prove that the following language is not regular. ? = { 0 ?1 ? | ?, ? ≥ 0, ? ≠ 2? + 1 } Question 5 Prove that the following language is not regular. ? = { ? ∈ { 0, 1, 2} ∗ | #0 (?) + #1 (?) = #2 (?) } where #? (?) denotes the number of occurrences of symbol a in string w.
Given that x =0 is a regular singular point of the given differential equation, show that...
Given that x =0 is a regular singular point of the given differential equation, show that the indicial roots of the singularity differ by an integer. Use the method of Frobenius to obtain at least one series solution about x = 0. xy"+(1-x)y'-y=0
(a) Show that x= 0 is a regular singular point. (b) Find the indicial equation and...
(a) Show that x= 0 is a regular singular point. (b) Find the indicial equation and the indicial roots of it. (c) Use the Frobenius method to and two series solutions of each equation x^2y''+xy'+(x^2-(4/9))y=0
Use the pumping lemma to show that the following languages are not regular. A a. A1={0^n...
Use the pumping lemma to show that the following languages are not regular. A a. A1={0^n 1^n 2^n | n≥0} b. A2 = {www | w ∈ {a,b}∗} A c. A3 ={a^2^n | n≥0} (Here, a^2^n means a string of 2^n a’s.) A ={a3n |n > 0 }
Determine whether or not the following languages are regular. If the language is regular then give...
Determine whether or not the following languages are regular. If the language is regular then give an NFA or regular expression for the language. Otherwise, use the pumping lemma for regular languages or closure properties to prove the language is not regular. 1) L = { 0 n1 k : k ≤ n ≤ 2k} 2) L = { 0 n1 k : n > 0, k > 0 } È { 1 k0 n : k > 0, n...
Regular => Context-Free Give a proof by induction on regular expressions that: For any language A,...
Regular => Context-Free Give a proof by induction on regular expressions that: For any language A, if A is regular, then A is also context-free. You may assume that the statements from the previous Closure under Context-Free Languages problem are proved. R is a regular expression if RR is: a for some a∈alphabet Σ, the empty string ε, the empty set ∅, R​1​​∪R​2​​, sometimes written R​1​​∣R​2​​, where R​1​​ and R​2​​ are regular expressions, R​1​​∘R​2​​, sometimes written R​1​​R​2​​, where R​1​​ and...
5 Regular => Context-Free Give a proof by induction on regular expressions that: For any language...
5 Regular => Context-Free Give a proof by induction on regular expressions that: For any language A, if A is regular, then A is also context-free. You may assume that the statements from the previous Closure under Context-Free Languages problem are proved.
Write regular expressions that describes the following language: The language over {0,1,/} that contains all and...
Write regular expressions that describes the following language: The language over {0,1,/} that contains all and only the strings that are base-2 (as above, you can use base-10 if you prefer) representations of rational numbers. Define a representation of a rational number to be either a representation of an integer, or two representations of integers separated by “/”. Leading 0s are allowed this time.
Write regular expressions that describes the following language: The language over {0,1} that contains all and...
Write regular expressions that describes the following language: The language over {0,1} that contains all and only the strings that are base-2 representations of odd positive integers. Do not allow leading 0s. (If you are more comfortable writing bulky regular expressions than you are working in base-2, you may write a regular expression for strings that are base-10 representations of odd integers without leading 0s, using alphabet {0,1,2,3,4,5,6,7,8,9}.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT