Use the pumping lemma to show that the following languages are
not regular
(c) (5 pts) Let Σ = {0, 1, −, =} and
SUB = {x = y − z | x, y, z are binary integers, and x is the
result of the subtraction of z from y}. For example: 1 = 1 − 0, 10
= 11 − 01 are strings in SUB but not 1 = 1 − 1 or 11 = 11 − 10.
1. Pumping Lemma:
a. Is the following language a regular language? (Use pumping
lemma in proof.) L = {0n 1n 2n | n ≥ 0}
b. What is (i.e., define) the CFL pumping lemma?
Do not use Pumping Lemma for Regular Expression to prove the
following. You may think of Closure Properties of Regular
Languages
1. Fix an alphabet. For any string w with |w| ≥ 2, let middle(w)
be the string obtained by removing the first and last symbols of w.
That is, Given L, a regular language on Σ, prove that f1(L) is
regular, where
f1(L) = {w : middle(w) ∈ L}
Determine whether or not the following languages are regular. If
the language is regular then give an NFA or regular expression for
the language. Otherwise, use the pumping lemma for regular
languages or closure properties to prove the language is not
regular.
1) L = { 0 n1 k : k ≤ n ≤ 2k}
2) L = { 0 n1 k : n > 0, k > 0 } È { 1 k0 n : k > 0, n...