Question

In: Physics

A solid dielectric cylinder of length L and radius R has a uniform charge per unit...

A solid dielectric cylinder of length L and radius R has a uniform charge per unit volume ρ. Derive a mathematical expression for the electric field E ! at a point on the axis of the cylinder, a distance z above the center of the cylinder, and outside the cylinder, i.e., for z > L/2. {Simplify and express your answer in terms of the given parameters and fundamental constants.

Solutions

Expert Solution


Related Solutions

A very long solid conducting cylinder of length L and radius R carries a uniform surface...
A very long solid conducting cylinder of length L and radius R carries a uniform surface current over the whole outer surface of the cylinder. The surface current is along Z and parallel to the XY-Plane. Use the Biot-Savart law to calculate the B field inside, at the middle of the cylinder. Thanks!
There is uniformly charged hollow cylinder The cylinder has radius R, length L, and total charge...
There is uniformly charged hollow cylinder The cylinder has radius R, length L, and total charge Q. It is centered on the z-axis, with one end at z=−L/2 and the other at z=+L/2.We are interested in finding the electric field generated by the cylinder at a point P located on the z-axis at z=z0. -Consider a thin ring segment of the cylinder, located at height z and having thickness dz. Enter an expression for the charge dQ of the ring?...
A long, conductive cylinder of radius R1 = 2.45 cm and uniform charge per unit length...
A long, conductive cylinder of radius R1 = 2.45 cm and uniform charge per unit length λ = 302 pC/m is coaxial with a long, cylindrical, non-conducting shell of inner and outer radii R2 = 8.57 cm and R3 = 9.80 cm, respectively. If the cylindrical shell carries a uniform charge density of ρ = 79.8 pC/m^3, find the magnitude of the electric field at the following radial distances from the central axis: 1.74 c.m= _________ N/C 6.25 c.m= __________...
A long, solid, insulating cylinder of radius R = 6 cm has a uniform charge density...
A long, solid, insulating cylinder of radius R = 6 cm has a uniform charge density of λ = −3 C/m. Find the electric field magnitude everywhere.
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3....
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3. Find the magnitude of the electric field at 1.25 m from the axis of the cylinder. a) what will your gaussian surface be? Make a sketch of the solid cylinder and the gaussian surface with their radii b) Write an expression for the total electric flux through the gaussian surface, that is the LHS (Left hand side) of the Gauss' law (this expression may...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r,...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r, and a hollow cylinder of radius r are all allowed to roll down an incline. Derive a general relationship for the linear acceleration of each object depending on the angle of the ramp and the rotational inertia. You may assume that the frictional force is small enough that it is only causing rotation in each case.
There is a solid, spherical dielectric (radius = 3 m) with a total charge of 30...
There is a solid, spherical dielectric (radius = 3 m) with a total charge of 30 μC and with uniform charge density. What is the electric field strength and the electric potential at -the center? (answer is 0 N/C and 135,000 V just show the work) -a distance 2 m from the center? (answer is 20,000 N/C and 115,000 V just show the work)
An infinitely long hollow cylinder of radius R is carrying a uniform surface charge density σ...
An infinitely long hollow cylinder of radius R is carrying a uniform surface charge density σ (φ). (a) Determine the general form of the solution of Laplace’s equation for this geometry. (b) Use the boundary condition σ(φ) = σ0cos(φ) to determine the potential inside and outside of the cylinder. (c) Using your answer to part (b), determine the electric field inside and outside of the cylinder.
A rod of length L has a charge per unit length λ. The rod rotates around...
A rod of length L has a charge per unit length λ. The rod rotates around its center at angular frequency ω. Using the dipole approximation, find the power radiated by the rotating rod.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT