Question

In: Electrical Engineering

A very long solid conducting cylinder of length L and radius R carries a uniform surface...

A very long solid conducting cylinder of length L and radius R carries a uniform surface current over the whole outer surface of the cylinder. The surface current is along Z and parallel to the XY-Plane.

Use the Biot-Savart law to calculate the B field inside, at the middle of the cylinder.

Thanks!

Solutions

Expert Solution

(1) We can assume the cylinder to be made up of rings with width dz. Lets assume origin at the middle of the cylinder. The incremental ring is situated at z and width is dz. The current on the incremental ring is

                                                           

The magnetic field due to incremental ring is

                                              

Or,

                                              

Or,

                               

Or,

                                     

Or,

                                                                   


Related Solutions

A solid dielectric cylinder of length L and radius R has a uniform charge per unit...
A solid dielectric cylinder of length L and radius R has a uniform charge per unit volume ρ. Derive a mathematical expression for the electric field E ! at a point on the axis of the cylinder, a distance z above the center of the cylinder, and outside the cylinder, i.e., for z > L/2. {Simplify and express your answer in terms of the given parameters and fundamental constants.
An infinitely long hollow cylinder of radius R is carrying a uniform surface charge density σ...
An infinitely long hollow cylinder of radius R is carrying a uniform surface charge density σ (φ). (a) Determine the general form of the solution of Laplace’s equation for this geometry. (b) Use the boundary condition σ(φ) = σ0cos(φ) to determine the potential inside and outside of the cylinder. (c) Using your answer to part (b), determine the electric field inside and outside of the cylinder.
A long, solid, insulating cylinder of radius R = 6 cm has a uniform charge density...
A long, solid, insulating cylinder of radius R = 6 cm has a uniform charge density of λ = −3 C/m. Find the electric field magnitude everywhere.
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform charge density ρ0, and the “southern” hemisphere a uniform charge density −ρ0. Find the approximate field E(r,θ) for points far from the sphere (r ≫ R). P.S. Please be as neat as possible.
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length ?? where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part E Calculate the magnitude the electric field in terms of ? and the distance r from the axis of the tube for r>b. Express your answer...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +?, where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part A Calculate the electric field in terms of ? and the distance r from the axis of the tube for r<a. Part B Calculate the electric...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length ?? where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part B Find the direction of the electric field in terms of ?and the distance r from the axis of the tube forr<a. Find the direction of...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r,...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r, and a hollow cylinder of radius r are all allowed to roll down an incline. Derive a general relationship for the linear acceleration of each object depending on the angle of the ramp and the rotational inertia. You may assume that the frictional force is small enough that it is only causing rotation in each case.
There is uniformly charged hollow cylinder The cylinder has radius R, length L, and total charge...
There is uniformly charged hollow cylinder The cylinder has radius R, length L, and total charge Q. It is centered on the z-axis, with one end at z=−L/2 and the other at z=+L/2.We are interested in finding the electric field generated by the cylinder at a point P located on the z-axis at z=z0. -Consider a thin ring segment of the cylinder, located at height z and having thickness dz. Enter an expression for the charge dQ of the ring?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT