Question

In: Computer Science

Using the simple model for representing binary floating point numbers A floating-point number is 14 bits...

  1. Using the simple model for representing binary floating point numbers
    • A floating-point number is 14 bits in length.
    • The exponent field is 5 bits.
    • The significand field is 8 bits.
    • The bias is 15

Represent -32.5010 in the simple model.

Solutions

Expert Solution

1 10101 10000010

Explanation:
-------------
-32.5
Converting 32.5 to binary
   Convert decimal part first, then the fractional part
   > First convert 32 to binary
   Divide 32 successively by 2 until the quotient is 0
      > 32/2 = 16, remainder is 0
      > 16/2 = 8, remainder is 0
      > 8/2 = 4, remainder is 0
      > 4/2 = 2, remainder is 0
      > 2/2 = 1, remainder is 0
      > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 100000
   So, 32 of decimal is 100000 in binary
   > Now, Convert 0.50000000 to binary
      > Multiply 0.50000000 with 2.  Since 1.00000000 is >= 1. then add 1 to result
      > This is equal to 1, so, stop calculating
   0.5 of decimal is .1 in binary
   so, 32.5 in binary is 00100000.1
-32.5 in simple binary => 100000.1
so, -32.5 in normal binary is 100000.1 => 0.1000001 * 2^6

14-bit format:
--------------------
sign bit is 1(-ve)
exponent bits are (15+6=21) => 10101
   Divide 21 successively by 2 until the quotient is 0
      > 21/2 = 10, remainder is 1
      > 10/2 = 5, remainder is 0
      > 5/2 = 2, remainder is 1
      > 2/2 = 1, remainder is 0
      > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10101
   So, 21 of decimal is 10101 in binary
frac/significant bits are 10000010

so, -32.5 in 14-bit format is 1 10101 10000010

Related Solutions

c) Using the 32-bit binary representation for floating point numbers, represent the number 1011100110011 as a...
c) Using the 32-bit binary representation for floating point numbers, represent the number 1011100110011 as a 32 bit floating point number. i) A digital camera processes the images images in the real-world and stores them in binary form. Using the principles of digital signal processing, practically explain how this phenomenon occurs.
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form. 0100_0001_1110_0010_1000_0000_0000_0000
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
represent the decimal number 101 and 6 as floating point binary numbers please show your work...
represent the decimal number 101 and 6 as floating point binary numbers please show your work and explained, I have a test.
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point...
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point format (i.e., 32 bits). Express your final answer in hexadecimal (e.g., 32’h????????). a) 68.3125 b) -19.675
The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754...
The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754 standard is
What is the minimum number of bits for representing the opcode if there are 62 different...
What is the minimum number of bits for representing the opcode if there are 62 different instructions? Please explain it, thanks.
Write a program that converts a given floating point binary number with a 24-bit normalized mantissa...
Write a program that converts a given floating point binary number with a 24-bit normalized mantissa and an 8-bit exponent to its decimal (i.e. base 10) equivalent. For the mantissa, use the representation that has a hidden bit, and for the exponent use a bias of 127 instead of a sign bit. Of course, you need to take care of negative numbers in the mantissa also. Use your program to answer the following questions: (a) Mantissa: 11110010 11000101 01101010, exponent:...
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
IEEE 754 format of 32-bit floating-point is as follows. 1 8 (bits) 23 (bits) What’s stored...
IEEE 754 format of 32-bit floating-point is as follows. 1 8 (bits) 23 (bits) What’s stored in each region? What’s the bias value and how to get it? For decimal fraction: – 0.625, please represent it as given format (Note: you must show the specific procedure/stepsin order to get full credits. If you only present final result directly, you will only get half of the credits even if it is correct.).  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT