Question

In: Mechanical Engineering

Consider a 2-mm-diameter sphere immersed in a fluid at 300 K and 1 atm. (a) If...

Consider a 2-mm-diameter sphere immersed in a fluid at 300 K and 1 atm.

(a) If the fluid around the sphere is quiescent and extensive, show that the conduction limit of heat transfer from the sphere can be expressed as NuD,cond = 2. Hint: Begin with the expression for the thermal resistance of a hollow sphere, letting r2 →∞ and then expressing the result in terms of the Nusselt number.

(b) Considering free convection, at what surface temperature will the Nusselt number be twice that for the conduction limit? Consider air and water as the fluids.

(c) Considering forced convection, at what velocity will the Nusselt number be twice that for the conduction limit? Consider air and water as the fluids.

Solutions

Expert Solution


Related Solutions

A horizontal Venturimeter with inlet diameter 300 mm and throat diameter 150 mm is used to...
A horizontal Venturimeter with inlet diameter 300 mm and throat diameter 150 mm is used to measure the flow of water. The pressure at inlet is 24 N/cm2 and the vacuum pressure (p2)at the throat is 320 mm of mercury. Find the discharge and velocity through the pipe .The value of Cd may be taken as 0.98.
A sample of concrete which is a cylinder 150 mm in diameter and 300 mm in...
A sample of concrete which is a cylinder 150 mm in diameter and 300 mm in length is placed in a test fixture. A load of 12,000 N is applied to the concrete specimen along the cylindrical axis and the length is observed to change 1 mm. Calculate Young's modulus in GPa.? Please reply as soon as possible
Air at 20°C (1 atm) is flowing over a 0.025-m diameter sphere with a velocity of...
Air at 20°C (1 atm) is flowing over a 0.025-m diameter sphere with a velocity of 3.5 m/s. If the surface temperature of the sphere is constant at 80°C, determine the Reynolds number corresponding to the sphere, its average drag co-efficient, and the heat transfer rate from the sphere. The properties of air (1 atm) at the free stream temperature T∞ = 20°C, ρ = 1.204 kg/m3, k = 0.02514 W/m∙K, μ = 1.825 × 10−5 kg/m∙s, and Pr = 0.7309. At the surface temperature Ts= 80°C: μs =...
A plain carbon steel ball 2 mm in diameter is heated to 1200 K in an...
A plain carbon steel ball 2 mm in diameter is heated to 1200 K in an oven and then cooled slowly in ambient air at 300 K. The convection heat transfer coefficient between air and this steel ball is 20 W / (m2 * K). You can find the density, specific heat and thermal conductivity from the property tables attached in text book with reasonable assumptions. Please derive an equation estimating the changes of the temperature of this ball with...
5. A sample of N2 gas at 298 K and 1 atm. The diameter of N2...
5. A sample of N2 gas at 298 K and 1 atm. The diameter of N2 molecule is d = 3.6 × 10-10 m. (1) Calculate the collisions per second that one molecule of N2 make. (II) Calculate the mean free path 2 in meter. 6. An ideal gas has absorbed 900 J as a heat energy and the volume of the gas was decreased from 20 L to 10 L at constant external pressure of 5 atm. (1) The...
A centrifugal pump has an eye diameter and an impeller diameter of 300 mm and 600...
A centrifugal pump has an eye diameter and an impeller diameter of 300 mm and 600 mm respectively while running at 850 rpm. When rotating, the blade angle is measured at 35o at the outlet with considering the tangent. The flow velocity is limited at 5 m/s constantly. Determine the following; (a) inlet blade angle (b) outlet absolute velocity with its angle at outlet and (c) the manometric head.
A 2.5 mm -diameter sphere is charged to -4.5 nC . An electron fired directly at...
A 2.5 mm -diameter sphere is charged to -4.5 nC . An electron fired directly at the sphere from far away comes to within 0.34 mm of the surface of the target before being reflected. Part A) What was the electron's initial speed? Part B) At what distance from the surface of the sphere is the electron's speed half of its initial value? Part C) What is the acceleration of the electron at its turning point?
The specific internal energy of helium at 300 K and 1 atm is 3800 J/mol, and...
The specific internal energy of helium at 300 K and 1 atm is 3800 J/mol, and the specific molar volume at the same temperature and pressure is 24.63 L/mol. Calculate the specific enthalpy of helium at this temperature and pressure in units of J/mol. At what rate (in units of kW) is enthalpy transported by a stream of helium at 300 K and 1 atm with a molar flowrate of 250 kmol/h? The specific internal energy of a fluid is...
. A 20 mm diameter sphere made of aluminum alloy 2024 initially at a uniform temperature...
. A 20 mm diameter sphere made of aluminum alloy 2024 initially at a uniform temperature of 500 ºC is suddenly immersed in a saturated water bath maintained at atmospheric pressure. The surface of the sphere has an emissivity or 0.25. Determine. a.) the total heat transfer coefficient for this initial condition, and b.) what fraction of the total coefficient is contributed by radiation. (~180 W/m2 -K, ~ 7%)
A 1-mm diameter sphere (density=7900 kg/m3) is dropped into a tank of oil (density=900 kg/m3). The...
A 1-mm diameter sphere (density=7900 kg/m3) is dropped into a tank of oil (density=900 kg/m3). The sphere develops a terminal speed of 0.25 cm/s, what is the oil's viscosity? You may assume a small Reynolds number. Show your work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT