Question

In: Chemistry

You mix 50.0 mL of a weak monoprotic acid with 50.0 mL of NaOH solution in...

You mix 50.0 mL of a weak monoprotic acid with 50.0 mL of NaOH solution in a coffee cup calorimeter. Both solutions (and the calorimeter) were initially at 22.0C. The final temperature of the neutralization reaction was determined to be 22.5C.

a) What is the total amount of heat evolved in this reaction? Show all work.

b) If 0.135 moles of the monoprotic acid were neutralized in this reaction, what is the molar heat of neutralization (enthalpy) for this reaction?

Solutions

Expert Solution

Total volume of the solution = 100mL = 100g since density of water = 1g/mL

specific heat of water 4.18J/g

The toal heat evolved in this process is = sp. heat x mass x difference in temperature

                                                                       = 4.18 x 100x 0.5=209J

b) For one mole of monoprotic acid and monoacidic base the molar heat of neutralization is -57.2kJ/mol

If 0.135 moles were neutralized then the enthalpy of the reaction = -57.2x0.135=7.722 kJ

Alternatively in this reaction 100g of water is produced from acid and base . that is 100/18 moles of water produced. By definition, one equivalent of H+ and one equivalent of OH- ions combine to form one mole of water is the neutralization process and the heat liberated in this process is molar heat of neutralization.

Thus one mole of monobasic acid produces one mole of water.

0.135 moles of acid produces 0.135 moles of water.

100/18 moles of water production gives 209 J

0.135 moles of water gives 0.135x 209x18/100=5.0787 J

and molar heat of neutralization for the process = 5.0787/0.135= 37.62 J/mol


Related Solutions

6. You mix 50.0 mL of a weak monoprotic acid with 50.0 mL of NaOH solution...
6. You mix 50.0 mL of a weak monoprotic acid with 50.0 mL of NaOH solution in a coffee cup calorimeter. Both solutions (and the calorimeter) were initially at 22.0OC. The final temperature of the neutralization reaction was determined to be 22.5OC. a) What is the total amount of heat evolved in this reaction? Show all work. b) If 0.135 moles of the monoprotic acid were neutralized in this reaction, what is the molar heat of neutralization (enthalpy) for this...
A 50.0 -mL sample of 0.50-M acetic acid, CH3COOH, is titrated with a 0.150M NaOH solution....
A 50.0 -mL sample of 0.50-M acetic acid, CH3COOH, is titrated with a 0.150M NaOH solution. Calculate the pH at equivalence point. (Ka=1.8x10^-5)
a)You have an aqueous solution of a weak monoprotic base with a volume of 300 mL...
a)You have an aqueous solution of a weak monoprotic base with a volume of 300 mL and a molarity of 0.150 M. you add to it 0.075 moles of its weak conjugate acid. You then add 6.00 g of barium hydroxide. Assuming the volume change is negligible what is the pOH of the resulting solution? b)You prepare a buffer with 0.500 moles of a weak monoprotic acid and 0.150 moles of its weak conjugate base. If you add 200 mL...
50.0 mL of 2.00 mol/L HNO3 solution and 50.0 mL of 1.00 mol/L NaOH solution, both...
50.0 mL of 2.00 mol/L HNO3 solution and 50.0 mL of 1.00 mol/L NaOH solution, both at 20.0 degree Celsius, were mixed in a calorimeter. Calculate the molar heat of neutralization of HNO3 in kJ/mol if: (1) final temperature was 28.9 degree Celsius; (2) the mass of the overall solution was 102.0 g; (3) the heat capacity of the calorimeter was 25.0 J/C; (4) and assume that the specific heat of solution is the same as water, 4.184 J/(g C);
The percentage deprotonation of a 0.110 M solution of benzoic acid (a weak, monoprotic acid) is...
The percentage deprotonation of a 0.110 M solution of benzoic acid (a weak, monoprotic acid) is 2.4%. What is the pH of the solution?
A 1.31 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water...
A 1.31 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water and titrated with a a 0.496 M aqueous sodium hydroxide solution. It is observed that after 9.16 milliliters of sodium hydroxide have been added, the pH is 7.227 and that an additional 14.6 mL of the sodium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? ____ g/mol (2) What is the value of Ka...
A professor titrated 0.47 g of an unknown monoprotic weak acid with 0.0973 M NaOH. The...
A professor titrated 0.47 g of an unknown monoprotic weak acid with 0.0973 M NaOH. The titration data is below. a) Calculate # of moles of NaOH required to reach the equivalence point (endpoint). b) Determine # of moles of acid titrated. c) Calculate Molar mass of unknown acid. d) determine the pKa of the unknown acid. e) Calculate the Ka of the unknown acid. Volume NaOH (mL) pH 0.00 2.73 2.00 3.30 4.00 3.64 6.00 3.86 8.00 4.03 10.00...
What is the percent ionization of a monoprotic weak acid solution that is 0.180 M? The...
What is the percent ionization of a monoprotic weak acid solution that is 0.180 M? The acid-dissociation (or ionization) constant, Ka, of this acid is 8.93 × 10-8.
A solution is prepared by adding 0.298 mol of a weak monoprotic acid (HA) to a...
A solution is prepared by adding 0.298 mol of a weak monoprotic acid (HA) to a sufficient amount of deionized water to give a total solution volume of 400.0 mL. If the Ka of the weak acid is 3.2 x 10^-5, what is the pH of the solution?
A student added 50.0 mL of an NaOH solution to 100.0 mL of 0.300 M HCl....
A student added 50.0 mL of an NaOH solution to 100.0 mL of 0.300 M HCl. The solution was then treated with an excess of aqueous chromium(III) nitrate, resulting in formation of 2.36 g of precipitate. Determine the concentration of the solution.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT