Question

In: Chemistry

An aqueous solution containing 15.9 g of an unknown molecular (nonelectrolyte) compound in 106.5 g of...

An aqueous solution containing 15.9 g of an unknown molecular (nonelectrolyte) compound in 106.5 g of water was found to have a freezing point of -2.0 ∘C.

Calculate the molar mass of the unknown compound.

Solutions

Expert Solution

solvent= 106.5 g/1000 = 0.1065 Kg
Freezing point depression constant for water k= 1.86°C/m

Freezing point of water Tinitial= 0°C
Freezing point of solution Tfinal= -2°C

depression in freezing point ∆Tf = 2°C.

m = molality = no. of moles of solute/mass of solute in Kg

m = n/mass

No. of moles = Mass/Molar mass

∆Tf = k . m
2°C = 1.86°C/m x m

m = 2/1.86

Molality = 1.075 m

Molaity = moles of solute/solvent in Kg

1.075 m = n/0.1065 kg

No. of moles = 1.075 x 0.1065 = 0.1144 moles

Given mass of solute = 15.9 g

N = mass/Molar mass

Molar mass = 15.9 /0.1144 =138.98 g/mol

Molar mass of unknown compound = 138.98 g/mol


Related Solutions

An aqueous solution containing 34.2g of an unknown molecular (nonelectrolyte) compound in 143.1g of water was...
An aqueous solution containing 34.2g of an unknown molecular (nonelectrolyte) compound in 143.1g of water was found to have a freezing point of -1.5?C. Calculate the molar mass of the unknown compound.
An aqueous solution containing 34.1 g of an unknown molecular (non-electrolyte) compound in 159.9 g of...
An aqueous solution containing 34.1 g of an unknown molecular (non-electrolyte) compound in 159.9 g of water was found to have a freezing point of -1.5 ∘ C Calculate the molar mass of the unknown compound.
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm. The combustion of 32.88 g of the unknown compound produced 55.60 gCO2 and 22.76 gH2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)? Express your answer as a chemical formula.
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm. The combustion of 23.40 g of the unknown compound produced 41.70 gCO2 and 17.07 gH2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm . The combustion of 32.88 g of the unknown compound produced 55.60 gCO2 and 22.76 gH2O . What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?
The osmotic pressure of a solution containing 2.10 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 2.10 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm . The combustion of 24.02 g of the unknown compound produced 28.16 g CO2 and 8.640 g H2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)? Express your answer as a chemical formula.
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm. The combustion of 23.40 g of the unknown compound produced 41.70 gCO2 and 17.07 gH2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?
The osmotic pressure of a solution containing 2.16 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 2.16 g of an unknown compound dissolved in 175.0 mL of solution at 25 ºC is 2.65 atm. The combustion of 25.05 g of the unknown compound produced 58.02 g CO2 and 19.80 g H2O. The compound contains only carbon, hydrogen, and oxygen. What is the molecular formula of the compound? Express your answer as a chemical formula
An aqueous solution containing 10 g of an optically pure compound was diluted to 500 mL...
An aqueous solution containing 10 g of an optically pure compound was diluted to 500 mL with water and was found to have a specific rotation of −111 ° . If this solution were mixed with 500 mL of a solution containing 7 g of a racemic mixture of the compound, what would the specific rotation of the resulting mixture of the compound? What would be its optical purity? [ α ]D = Optical purity = %
An aqueous solution containing 6.36 g of lead(II) nitrate is added to an aqueous solution containing...
An aqueous solution containing 6.36 g of lead(II) nitrate is added to an aqueous solution containing 5.85 g of potassium chloride. Enter the balanced chemical equation for this reaction. Be sure to include all physical states. What is the limiting reactant? The percent yield for the reaction is 87.2%, how many grams of precipitate were recovered? How many grams of the excess reactant remain?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT