Question

In: Chemistry

A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution....

A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of the KOH solution: (a) 0.0 mL, (b) 5.0 mL, (c) 10.0 mL, (d) 12.5 mL, (e) 15.0 mL. (25 points)

Solutions

Expert Solution

no of mole ofCH3COOH taken = 25*0.1 = 2.5 mmole

a) initial

   pH = 1/2(pka-logC)

   pka of cH3COOH = 4.76

    C = concentration of CH3COOH = 0.1 M

   pH = 1/2(4.76-log0.1)

      = 2.88

b) after 5 ml KOH added

   no of mole ofCH3COOH taken = 25*0.1 = 2.5 mmole

   no of mole of KOH added = 5*0.2= 1 mmole

pH = pka +log(base/acid)

     = 4.76+log(1/(2.5-1))

     = 4.584

c) after 10 ml KOH added

   no of mole ofCH3COOH taken = 25*0.1 = 2.5 mmole

   no of mole of KOH added = 10*0.2= 2 mmole

pH = pka +log(base/acid)

     = 4.76+log(2/(2.5-2))

     = 5.36

   d) after 12.5 ml KOH added

   no of mole ofCH3COOH taken = 25*0.1 = 2.5 mmole

   no of mole of KOH added = 12.5*0.2= 2.5 mmole

   EQUIVALENCE POINT

   pH = 7+1/2(pka+logC)

    C = concentration of salt = n/V = 2.5/(37.5) = 0.067 M

     pka of CH3COOH = 4.76


    pH = 7+1/2(4.76+log0.067)

        = 8.8

   e) after 15 ml KOH added

   no of mole ofCH3COOH taken = 25*0.1 = 2.5 mmole

   no of mole of KOH added = 15*0.2= 3 mmole

   concentration of excess KOH = (3-2.5)/40 = 0.0125 M

   pH = 14 - (-log(OH-))

      = 14 - (-log0.0125)

       = 12.1


Related Solutions

A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution....
A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of the KOH solution: (a) 0.0 mL, (b) 5.0 mL, (c) 10.0 mL, (d) 12.5 mL, (e) 15.0 mL. (25 points)
A 25.0−mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate...
A 25.0−mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of the KOH solution (a) 10.0 mL (b) 12.5 mL (c) 15.0 mL
A 25.0-mL solution of 0.100 M acetic acid is titrated with a 0.200 M KOH solution....
A 25.0-mL solution of 0.100 M acetic acid is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of the KOH solution: a) 0.0 mL b) 5.0 mL c) 10.0 mL d) 12.5 mL e) 15.0 mL
25.0 mL of a 0.100 M HCN solution is titrated with 0.100 M KOH. Ka of...
25.0 mL of a 0.100 M HCN solution is titrated with 0.100 M KOH. Ka of HCN=6.2 x 10^-10. a)What is the pH when 25mL of KOH is added (this is the equivalent point). b) what is the pH when 35 mL of KOH is added.
A 20.00 mL solution of 0.100 M HCOOH (formic) was titrated with 0.100 M KOH. The...
A 20.00 mL solution of 0.100 M HCOOH (formic) was titrated with 0.100 M KOH. The Ka for the weak acid formic is 1.40 x 10-5. a. Determine the pH for the formic prior to its titration with KOH. b. Determine the pH of this solution at the ½ neutralization point of the titration. c. Identify the conjugate acid-base pair species at the ½ neutralization point.
30.0 mL of 0.100 M H2CO3 is titrated with 0.200 M KOH. Calculate the initial pH...
30.0 mL of 0.100 M H2CO3 is titrated with 0.200 M KOH. Calculate the initial pH before KOH has been added. ka = 4.3 x 10-7. Calculate the pH when 10.0 mL of a .200M KOH is added to 30.0 mL of 0.100 M H2CO3. ka = 4.3 x 10-7. Calculate the equivalence point and then calculate the pH at the equivalence point. Calculate the pH if 20.0 mL of 0.200 M KOH is added to 30.0 mL of 0.100...
A 26.0−mL solution of 0.120 M CH3COOH is titrated with a 0.220 M KOH solution. Calculate...
A 26.0−mL solution of 0.120 M CH3COOH is titrated with a 0.220 M KOH solution. Calculate the pH after the following additions of the KOH solution: (a) 0.00 mL (b) 5.00 mL
25.0 mL of 0.200 M solution of HBr are mixed with 25.0 mL of 0.200 M...
25.0 mL of 0.200 M solution of HBr are mixed with 25.0 mL of 0.200 M solution of NaOH in a constant pressure calorimeter. The temperature increases from 23.00 °C to 24.37 °C. Assume that the specific heat of the solution is the same as that of pure water (4.18 J/(g•°C)) and that the density is the same as pure water (1.00 g/mL). Calculate ΔH per mole of reaction for the below chemical reaction. HBr (aq) + NaOH (aq) →...
A 40.0-mL sample of 0.100 M HNO2 is titrated with 0.200 M KOH. Calculate: a.the volume...
A 40.0-mL sample of 0.100 M HNO2 is titrated with 0.200 M KOH. Calculate: a.the volume required to reach the equivalence point b.the pH after adding 15.00 mL of KOH c.the pH at one-half the equivalence point
A 50.00-mL solution of 0.100 M ethanolamine (HOC2H5NH2) is titrated with a standardized 0.200 M solution...
A 50.00-mL solution of 0.100 M ethanolamine (HOC2H5NH2) is titrated with a standardized 0.200 M solution of HCl at 25°C. Enter your numbers to 2 decimal places. Kb = 3.2 x 10-5 Answer with work please :) 1. What is the pH of the ethanolamine solution before titrant is added? 2. What is the pH at the half-equivalence point? 3. What is the pH at the equivalence point? 4. What is the pH after 30.00 ml of 0.200 M HCl...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT