Question

In: Physics

Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light...

Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them as shown in the figure below. A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of v with arrow3m = 1.70 m/s.

(a) What is the velocity of the block of mass m? (Assume right is positive and left is negative.) _____ m/s

(b) Find the system's original elastic potential energy, taking m = 0.380 kg. _____ J

(c) Is the original energy in the spring or in the cord? in the spring in the cord

(d) Explain your answer to part (c). .

(e) Is the momentum of the system conserved in the bursting-apart process? Yes No

(f) Explain how that is possible considering there are large forces acting. (g) Explain how that is possible considering there is no motion beforehand and plenty of motion afterward?

Solutions

Expert Solution


Related Solutions

Two masses are on a horizontal, frictionless surface. The plane of the surface is the x-y...
Two masses are on a horizontal, frictionless surface. The plane of the surface is the x-y plane. Mass m1 = 1.0kg is at rest while mass m2 = 2.0kg is moving in the positive x-direction at 15m/s. The two masses then undergo a collision and mass m2 is moving with a speed of 9.0m/s at an angle of 35 degrees after the collision. 1) What is the speed of the center of mass of the two masses before the collision?...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?           a) -0.33 m/s           b) +0.33 m/s           c) 3.27 m/s           d) 0.67 m/s           e) 0.25 m/s
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged in order by the 1kg block, then the 2kg block, and then the 3kg block; you push the 1kg block. a. Calculate the force exerted by the 3kg block on the 2kg block. b. Calculate the force exerted by the 2kg block on the 1kg block. For both parts show if you are using Newton's 2nd or 3rd Law and where.
Two particles of equal masses m1=m2 move on a frictionless horizontal surface in the vicinity of...
Two particles of equal masses m1=m2 move on a frictionless horizontal surface in the vicinity of a fixed force center, with potential energies U1 = 1/2kr^(2)1 and U2 = 1/2kr^(2)2. In addition they interact with each other via a potential energy U12 = 1/2αkr^2 where r is the distance between them and α and k are positive constants. (a) Find the Lagrangian in terms of the CM position R and the relative position r. (b) Write down and solve the...
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by...
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by a hanging 15.0-N weight (block C). Block A has a mass of 4.00 kg. The mass of block B is only 1.00 kg. The blocks gain speed as they move toward the right, and the strings remain taut at all times. ? 1) Assuming the pulley is massless and frictionless, what is the value of the tension T1? (Express your answer to three significant...
. Two masses travel toward each other across a horizontal, frictionless surface. They collide, resulting in...
. Two masses travel toward each other across a horizontal, frictionless surface. They collide, resulting in 100 Joules of kinetic energy being lost. Below is a list of the known quantities. Mass#1 = 5.00 kg and has an initial velocity of 10.0 m/s to the right and a final velocity of 3.00 m/s to the right. Mass#2 = unknown and has an initial velocity of 4.00 m/s to the left and a final velocity that is unknown. What is the...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 18.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F
  Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F (applied horizontally) and they are pushed D meters on the surface. If M1<M2, which one of the following is wrong? A. Kinetic energy of block M1 is greater than the kinetic energy of block M2. B. Speed of block M1 is greater than the speed of block M2. C. Acceleration of block...
Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by...
Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force F⃗ . (Figure 1) The magnitude of the tension in the string between blocks B and C is T = 3.00 N . Assume that each block has mass m = 0.400 kg . What is the magnitude F of the force? What is the tension TAB in the string between block A and block B? Express your answers numerically in...
Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by...
Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force F⃗ . (Figure 1) The magnitude of the tension in the string between blocks B and C is T = 3.00 N . Assume that each block has mass m = 0.400 kg . a) What is the magnitude F of the force? b)What is the tension TAB in the string between block A and block B?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT