Question

In: Mechanical Engineering

Steam enters an adiabatic turbine at 500C and 4.0MPa and 80m/s. The steam leaves the turbine...

Steam enters an adiabatic turbine at 500C and 4.0MPa and 80m/s. The steam leaves the turbine as saturated liquid-vapor mixture at 30kPa, quality of 92% and 50m/s. The mass flow rate of steam through the turbine is 12kg/s.

(10 pts) Determine change in kinetic energy

(10 pts) Determine the rate of work (power) done by the steam in the turbine, in kW (neglect potential energy change).

(10 pts) Determine the flow area at the entrance to the turbine, in m2. (Hint: use mass flow rate definition).

Solutions

Expert Solution


Related Solutions

Question 3 Steam enters an adiabatic turbine at 800 psia and 900oF and leaves at a...
Question 3 Steam enters an adiabatic turbine at 800 psia and 900oF and leaves at a pressure of 40 psia. Determine the maximum amount of work that can be delivered by this turbine.
Steam enters an adiabatic turbine steadily at 3 MPa and 400°C and leaves at 50 kPa....
Steam enters an adiabatic turbine steadily at 3 MPa and 400°C and leaves at 50 kPa. If the isentropic efficiency of the turbine is 66.7%, determine the actual temperature of steam at turbine exit. The mass flow rate of the steam flowing through the turbine is 218 kg/min, determine the power output from the turbine. Plot the T-s diagram.
Steam enters a turbine at 10 MPa, 410oC, and 80 m/s, and leaves at 10 kPa,...
Steam enters a turbine at 10 MPa, 410oC, and 80 m/s, and leaves at 10 kPa, 90 percent quality and 50 m/s. Steam flows steadily through the turbine at 10 kg/s and the heat loss from the turbine is 0.5 kW. Neglecting potential energy changes, determine The power output of the turbine (kW) The turbine inlet area (m2) The turbine outlet area (m2) The volume flow rate of steam at turbine outlet (m3/s)
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam exits the turbine with a pressure of 100 kPa. Determine the minimum exit quality and the maximum power output of the turbine in kW.
Steam enters a turbine at a velocity of 200 m/s. The inlet conditions of the steam...
Steam enters a turbine at a velocity of 200 m/s. The inlet conditions of the steam are at 4000 kPA and 500°C. The diameter of the inlet pipe is 50 mm. The outlet conditions of the steam are 80 kPa and a quality of 1.0. The diameter of the outlet pipe is 250 mm. Determine the turbine power output in kJ/s assuming the kinetic energy change and potential energy change are both negligible. Calculate the change in kinetic energy to...
An adiabatic steam turbine is fed by 2.20 lbm/s, at a velocity of 100 ft/s
An adiabatic steam turbine is fed by 2.20 lbm/s, at a velocity of 100 ft/s. The turbine generates an output of 1507 hp. The specific enthalpy of the water at the turbine outlet is 1007 Btu/lbm. The exit velocity is 600 ft/s. Determine the specific enthalpy of the steam at the turbine inlet.
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with...
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.92. The steam enters at 3 MPa and 400 C and leaves at 30 kPa. Determine how much power the turbine is producing. Express your result in kW. (Sol: 1649 kW)
A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine...
A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine at 2400 kPa and 500oC and exhausts from the turbine at 20 kPa as saturated vapor. What is the flow rate of steam run through the turbine, and what is the turbine efficiency? Draw the process on the P-H diagram.
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa,...
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C and 80 m/s, and the exit conditions are 30 kPa, 92% quality and 50 m/s. The mass flowrate of the steam is 12 kg/s. Investigate the effect of the turbine exit pressure on the power output of the turbine. Let the exit pressure vary from 10 to 200 kPa. Plot (1) T2 vs P2 and 2) Plot the power output (W_dot_T in MW)...
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees...
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees C(state 1), the steam exits at 15kPa with quality of 0.95(state 2 actual). Find a) isentropic power output of the turbine using listed pressures, b) actual power output of the turbine, c) isentropic efficiency of the turbine, d) s2-s1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT