Question

In: Mechanical Engineering

A convergent-divergent duct has a throat area that is 1/3 the area of the inlet. If...

A convergent-divergent duct has a throat area that is 1/3 the area of the inlet. If the pressure at the throat is 95lbft2 less than the pressure at the inlet, what is the inlet velocity, assuming density is .002 slugs/ft3 ?

Solutions

Expert Solution

Please do comment for any queries. Thank u


Related Solutions

A convergent–divergent nozzle with an exit area to throat area ratio of 3 is supplied with...
A convergent–divergent nozzle with an exit area to throat area ratio of 3 is supplied with air from a reservoir in which the pressure is 350 kPa. The air from the nozzle is discharged into another large reservoir. It is found that the flow leaving the nozzle exit is directed inward at an angle of 4° to the nozzle centerline. The velocity on the nozzle exit plane is supersonic. What is the pressure in the second reservoir?
Air at 5 bar and 560K is expanded in steady flow in a horizontal convergent–divergent duct...
Air at 5 bar and 560K is expanded in steady flow in a horizontal convergent–divergent duct to an exit velocity of 640 ms−1. The walls of the duct are heated so as to keep the temperature drop to one-half the value of an isentropic expansion to the same velocity and pressure from the same initial conditions. Calculate, assuming negligible initial velocity: a. the heat supplied; b. the final temperature; c. the mass flow rate per square metre of exit area.
Consider a converging-diverging nozzle with an exit-to-throat area of 3. The inlet reservoir pressure is 1...
Consider a converging-diverging nozzle with an exit-to-throat area of 3. The inlet reservoir pressure is 1 atm and the exit pressure is 0.5 atm. (a) For this pressure ratio a normal shock will stand somewhere inside the divergent portion of nozzle. Calculate the location of shock (A/At =?). (b) back pressure if the flow were isentropic throughout.
Determine whether the integrals are divergent or convergent. Calculate the convergent ones. ?)∫ 1 / ?^2+?...
Determine whether the integrals are divergent or convergent. Calculate the convergent ones. ?)∫ 1 / ?^2+? ?x (from 1 to positive infinity) ?) ∫ ? −√? / √? ?? ( from 1 to positive infinity) ?) ∫ ??????? (negative infinity to positive infinity) ?) ∫ 1 / √3−? ?x ( from 2 to 3)
Please solve fully Determine whether the geometric series is convergent or divergent. If it is convergent,...
Please solve fully Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.8 − 11 + 121 8   − 1331 64   +   Step 1 To see 8 − 11 + 121 8   − 1331 64   +    as a geometric series, we must express it as ∞ ar n − 1 n = 1 . For any two successive terms in the geometric series ∞ ar n − 1 n = 1 , the ratio of...
\sum _{n=1}^{\infty }\:\frac{4\left(-1\right)^n+2^n}{3^n} Determine whether the series is convergent or divergent. If it is convergent, find...
\sum _{n=1}^{\infty }\:\frac{4\left(-1\right)^n+2^n}{3^n} Determine whether the series is convergent or divergent. If it is convergent, find its sum.
convergent or divergent infinity sigma n = 1 sqrt(n^5+ n^3 -7) / (n^3-n^2+n)
convergent or divergent infinity sigma n = 1 sqrt(n^5+ n^3 -7) / (n^3-n^2+n)
Problem 1: Carbon dioxide flows isentropically at the rate of 1 kg/s through a convergent-divergent nozzle....
Problem 1: Carbon dioxide flows isentropically at the rate of 1 kg/s through a convergent-divergent nozzle. The stagnation temperature is 310 K and the stagnation pressure is 1400 kPa. If the exit pressure is 101.3 kPa, determine a) throat area, b) exit Mach number and c) exit velocity. Assume sonic (M =1) conditions at throat. (d) plot using MS excel variation of: total temperature, total pressure, total density, density, temperature, Mach number, velocity, speed of sound along the centre line...
Air is supplied to a convergent–divergent nozzle from a large tank in which the pressure and...
Air is supplied to a convergent–divergent nozzle from a large tank in which the pressure and temperature are kept at 700 kPa and 40°C, respectively. If the nozzle has an exit area that is 1.6 times the throat area and if a normal shock occurs in the nozzle at a section where the area is 1.2 times the throat area, find the pressure, temperature, and Mach number at the nozzle exit. Assume one-dimensional, isentropic flow.
Air is supplied to a convergent–divergent nozzle from a reservoir where the pressure is 100 kPa....
Air is supplied to a convergent–divergent nozzle from a reservoir where the pressure is 100 kPa. The air is then discharged through a short pipe into another reservoir where the pressure can be varied. The cross-sectional area of the pipe is twice the area of the throat of the nozzle. Friction and heat transfer may be neglected throughout the flow. If the discharge pipe has constant cross-sectional area, determine the range of static pressure in the pipe for which a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT