Question

In: Chemistry

A reaction container contains 10.7 atm of both N2 and O2 and 5.97 atm of NO....

A reaction container contains 10.7 atm of both N2 and O2 and 5.97 atm of NO. What is the pressure of NO once equilibrium is established? Kp = 2.4 x 10-2

N2 (g) + O2(g) ⇌ 2 NO (g)

Show your work!

Solutions

Expert Solution

                    N2 (g) + O2(g) ⇌ 2 NO (g)

I                 10.7     10.7           5.97

C                 +x          +x                -2x

E               10.7+x   10.7+x          5.97-2x

   Kp    = PNO^2/PN2PO2

2.4*10^-2   = (5.97-2x)^2/(10.7+x) *(10.7+x)

2.4*10^-2   = [(5.97-2x)/(10.7+x)]^2

0.155        = (5.97-2x)/(10.7+x)

0.155*(10.7+x) = (5.97-2x)

x    = 2

PN2 = 10.7 +x = 10.7+2 = 12.7atm

PN2 = 10.7 +x = 10.7+2 = 12.7atm

[NO]   = 5.97-2x   = 5.97-2*2 = 1.97atm


Related Solutions

A gas mixture contains 1.25 g N2 and 0.84 g O2 in a 1.53-L container at...
A gas mixture contains 1.25 g N2 and 0.84 g O2 in a 1.53-L container at 14 ∘C. A.) Calculate the mole fraction of N2. B.) Calculate the mole fraction of O2. C.) Calculate the partial pressure of N2. D.) Calculate the partial pressure of O2.
A flask is filled with 3.0 atm of N2 and 4.0 atm of O2. The gases...
A flask is filled with 3.0 atm of N2 and 4.0 atm of O2. The gases react and NO2 is formed. What is the pressure in the flask after the reaction occurs as completely as possible? Assume that the volume and temperature in the flask remain constant. (1) 4.0 atm (2) 5.0 atm (3) 6.0 atm (4) 8.0 atm (5) 10.0 atm I keep getting 6atm but the answer is 5atm
A 2.00 L reaction container at 25.0 °C contains CO2 (g) and O2 (g). The total...
A 2.00 L reaction container at 25.0 °C contains CO2 (g) and O2 (g). The total pressure of the gases in the container was 656 torr and the mole fraction of CO2 is 0.245. Calculate the partial pressure of oxygen gas in the mixture Calculate the mass of oxygen gas in the mixture (in g). Which gas will rise to the top of the container? Explain your answer. Calculate the total volume of the container if 15.0 g of helium...
Starting with 2.50 mol of nitrogen gas (N2) in a container at 1.00 atm pressure and...
Starting with 2.50 mol of nitrogen gas (N2) in a container at 1.00 atm pressure and 20.0 °C temperature, a student heats the gas at constant volume with 15.2 kJ of heat, then continues heating while allowing the gas to expand at constant pressure, until it is at twice its original volume. What is the final temperature of the gas? How much work was done by the gas? How much heat was added to the gas while it was expanding?...
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature...
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature T is ignited. The remaining gas, which is entirely H2 (g) exerts a pressure of 0.30 atm at tempertaure T. Assume that the gases are ideal and the H2O(l) formed in the combustion reaction takes up negligible volue in the container. Determine the mole fraction of O2(g) in the original mixture.
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature...
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature T is ignited. The remaining gas, which is entirely H2 (g) exerts a pressure of 0.30 atm at tempertaure T. Assume that the gases are ideal and the H2O(l) formed in the combustion reaction takes up negligible volue in the container. Determine the mole fraction of O2(g) in the original mixture.
If the pressure of O2 in a 1.0-L container at 20 degrees Celsius is 0.37 atm,...
If the pressure of O2 in a 1.0-L container at 20 degrees Celsius is 0.37 atm, what will be the pressure on the container if 0.10 mol CO2 is added to it?
Calculate the collision frequency for the N2 – N2 collisions, N2 – O2 collisions and O2...
Calculate the collision frequency for the N2 – N2 collisions, N2 – O2 collisions and O2 – O2 collisions in air at 298 k and 0.95 bar pressure. Assume air is 80 % N2 and 20% O2 by mass and that σ = 0.43 nm2 for both molecules.
A gaseous mixture of O2 and N2 contains 40.8 % nitrogen by mass. What is the...
A gaseous mixture of O2 and N2 contains 40.8 % nitrogen by mass. What is the partial pressure of oxygen in the mixture if the total pressure is 385 mmHg ? Express you answer numerically in millimeters of mercury.
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730° C the...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730° C the half-life of the reaction is 3.58 × 103 min. If the initial pressure of N2O is 5.50 atm at 730° C, calculate the total gas pressure after one half-life. Assume that the volume remains constant. _____atm
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT