In: Statistics and Probability
District | Adjusted Gross Income | Percent Audited |
Los Angeles | 36.664 | 1.3 |
Sacramento | 38.845 | 1.1 |
Atlanta | 34.886 | 1.1 |
Boise | 32.512 | 1.1 |
Dallas | 34.531 | 1.0 |
Providence | 35.995 | 1.0 |
San Jose | 37.799 | 0.9 |
Cheyenne | 33.876 | 0.9 |
Fargo | 30.513 | 0.9 |
New Orleans | 30.174 | 0.9 |
Oklahoma City | 30.060 | 0.8 |
Houston | 37.153 | 0.8 |
Portland | 34.918 | 0.7 |
Phoenix | 33.291 | 0.7 |
Augusta | 31.504 | 0.7 |
Albuquerque | 29.199 | 0.6 |
Greensboro | 33.072 | 0.6 |
Columbia | 30.859 | 0.5 |
Nashville | 32.566 | 0.5 |
Buffalo | 34.296 | 0.5 |
a) Use XLSTAT to compute a 95% confidence interval for the average percent audited of districts with an average adjusted gross income of $35,000. Interpret the interval in the context of the application.
b) Use XLSTAT to compute a 95% prediction interval for the percent audited of an individual district with an average adjusted gross income of $35,000. Interpret the interval in the context of the application.
c) Use the regression output in XLSTAT to calculate the coefficient of determination, r2r2 from the sum of squares due to regression (SSR) and the total sum of squares (SST). Interpret your calculated value of r2r2 in the context of the application.
District | Adjusted Gross Income (x) | Percent Audited | (x-x_)^2 |
Los Angeles | 36.664 | 1.3 | 9.17 |
Sacramento | 38.845 | 1.1 | 27.14 |
Atlanta | 34.886 | 1.1 | 1.56 |
Boise | 32.512 | 1.1 | 1.26 |
Dallas | 34.531 | 1 | 0.80 |
Providence | 35.995 | 1 | 5.57 |
San Jose | 37.799 | 0.9 | 17.33 |
Cheyenne | 33.876 | 0.9 | 0.06 |
Fargo | 30.513 | 0.9 | 9.75 |
New Orleans | 30.174 | 0.9 | 11.98 |
Oklahoma City | 30.06 | 0.8 | 12.78 |
Houston | 37.153 | 0.8 | 12.37 |
Portland | 34.918 | 0.7 | 1.64 |
Phoenix | 33.291 | 0.7 | 0.12 |
Augusta | 31.504 | 0.7 | 4.54 |
Albuquerque | 29.199 | 0.6 | 19.68 |
Greensboro | 33.072 | 0.6 | 0.32 |
Columbia | 30.859 | 0.5 | 7.71 |
Nashville | 32.566 | 0.5 | 1.14 |
Buffalo | 34.296 | 0.5 | 0.44 |
Total | 672.71 | 16.60 | 145.38 |
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.4659 | |||||
R Square | 0.2171 | |||||
Adjusted R Square | 0.1736 | |||||
Standard Error | 0.2088 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 0.2175 | 0.2175 | 4.9901 | 0.0384 | |
Residual | 18 | 0.7845 | 0.0436 | |||
Total | 19 | 1.0020 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -0.4710 | 0.5842 | -0.8061 | 0.4307 | -1.6984 | 0.7565 |
Adjusted Gross Income | 0.0387 | 0.0173 | 2.2339 | 0.0384 | 0.0023 | 0.0751 |
c)
r^2==SSR/SST= 0.2175/1.0020=0.2171
Interpretation: 21.71% variation of the model or response variable (percent audited) is explained by the explanatory variable (average adjusted gross income).