In: Statistics and Probability
Resistors for electronic circuits are manufactured on a high-speed automated machine. The machine is set up to produce a large run of resistors of 1,000 ohms each. Use Exhibit 10.13.
To set up the machine and to create a control chart to be used throughout the run, 15 samples were taken with four resistors in each sample. The complete list of samples and their measured values are as follows: Use three-sigma control limits. *ONLY ANSWER b,c,d, e please. Thank you!*
| SAMPLE NUMBER | READINGS (IN OHMS) | |||
| 1 | 992 | 992 | 1000 | 1027 | 
| 2 | 978 | 994 | 985 | 1018 | 
| 3 | 1021 | 998 | 1018 | 994 | 
| 4 | 974 | 1022 | 999 | 1026 | 
| 5 | 1000 | 1012 | 1030 | 991 | 
| 6 | 974 | 987 | 985 | 987 | 
| 7 | 1005 | 973 | 1011 | 1001 | 
| 8 | 983 | 1024 | 1012 | 977 | 
| 9 | 990 | 1004 | 973 | 999 | 
| 10 | 990 | 1018 | 1024 | 1001 | 
| 11 | 998 | 976 | 1029 | 980 | 
| 12 | 1024 | 1020 | 1020 | 976 | 
| 13 | 1026 | 1018 | 1029 | 971 | 
| 14 | 982 | 979 | 982 | 989 | 
| 15 | 991 | 988 | 980 | 994 | 
a. Calculate the mean and range for the above samples. (Round "Mean" to 2 decimal places and "Range" to the nearest whole number.)
| Sample Number | Mean | Range | 
| 1 | 1002.75 | 35 | 
| 2 | 933.75 | 40 | 
| 3 | 1007.75 | 27 | 
| 4 | 1005.25 | 52 | 
| 5 | 1008.25 | 39 | 
| 6 | 983.25 | 13 | 
| 7 | 997.50 | 38 | 
| 8 | 999 | 47 | 
| 9 | 991.50 | 31 | 
| 10 | 1008.25 | 34 | 
| 11 | 995.75 | 53 | 
| 12 | 1010 | 48 | 
| 13 | 1011 | 58 | 
| 14 | 983 | 10 | 
| 15 | 988.25 | 14 | 
b. Determine X=X= and R−R−. (Round your answers to 3 decimal places.)
| X=X= | |
| R−R− | 
c. Determine the UCL and LCL for a X−X−chart. (Round your answers to 3 decimal places.)
| UCL | |
| LCL | 
d. Determine the UCL and LCL for R-chart. (Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 3 decimal places.)
| UCL | |
| LCL | 
e. What comments can you make about the process?
| The process is in statistical control. | |
| The process is out of statistical control. | 
Solution(a)
| 
 Sample Number  | 
 Xbar  | 
 Range  | 
||||
| 
 1  | 
 992  | 
 992  | 
 1000  | 
 1027  | 
 1002.75  | 
 35  | 
| 
 2  | 
 978  | 
 994  | 
 985  | 
 1018  | 
 993.75  | 
 40  | 
| 
 3  | 
 1021  | 
 998  | 
 1018  | 
 994  | 
 1007.75  | 
 27  | 
| 
 4  | 
 974  | 
 1022  | 
 999  | 
 1026  | 
 1005.25  | 
 52  | 
| 
 5  | 
 1000  | 
 1012  | 
 1030  | 
 991  | 
 1008.25  | 
 39  | 
| 
 6  | 
 974  | 
 987  | 
 985  | 
 987  | 
 983.25  | 
 13  | 
| 
 7  | 
 1005  | 
 973  | 
 1011  | 
 1001  | 
 997.5  | 
 38  | 
| 
 8  | 
 983  | 
 1024  | 
 1012  | 
 977  | 
 999  | 
 47  | 
| 
 9  | 
 990  | 
 1004  | 
 973  | 
 999  | 
 991.5  | 
 31  | 
| 
 10  | 
 990  | 
 1018  | 
 1024  | 
 1001  | 
 1008.25  | 
 34  | 
| 
 11  | 
 998  | 
 976  | 
 1029  | 
 980  | 
 995.75  | 
 53  | 
| 
 12  | 
 1024  | 
 1020  | 
 1020  | 
 976  | 
 1010  | 
 48  | 
| 
 13  | 
 1026  | 
 1018  | 
 1029  | 
 971  | 
 1011  | 
 58  | 
| 
 14  | 
 982  | 
 979  | 
 982  | 
 989  | 
 983  | 
 10  | 
| 
 15  | 
 991  | 
 988  | 
 980  | 
 994  | 
 988.25  | 
 14  | 
Solution(b)
Xdoublebar =
(1002.75+993.75+1007.75+1005.25+1008.25+983.25+997.5+999+991.5+1008.25+999.75+1010+1011+983+988.25)/15
= 999.012
Rbar = (35+40+27+52+39+13+ 38+47+31+34+53+48+58+10+14)/15 =
35.933
Solution(c)
LCL = Xdoublebar - A2*Rbar = 999.02 - 0.729*35.93 = 972.827
UCL = Xdoublebar + A2*Rbar = 999.02 + 0.729*35.93 =
1025.213
Solution(d)
LCL = D3*Rbar = 0*35.93 = 0
UCL = D4*Rbar = 2.282*35.93 = 81.992
Solution(e)
From the LCL and UCL limits of Range and Mean, we can say that the
process is in statistical control.