Question

In: Statistics and Probability

An urn contains colored balls;5 red balls, 8 green balls, and 10 blue balls. Suppose ...

An urn contains colored balls;5 red balls, 8 green balls, and 10 blue balls. Suppose  If the 3 balls are drawn one after another without replacement, what is the probability that the colors observed will be Red, Green, Blue in this order?  If the three balls are drawn simultaneously from the urn (without replacement), what is the probability that the selected balls will be all different?

Solutions

Expert Solution

An urn contains 5 red balls, 8 green balls, and 10 blue balls.

So, in total, there are 5+8+10, ie. 23 colored balls.

Question (a)

3 balls are drawn one after another without replacement. we have to find the probability that the colors of the observed ball will be red, green, blue, in this order.

At first there are 5 red balls; and a total of 23 colored balls.

So, the first ball is red with probability 5/23.

Now, there are 8 green balls; but there are 22 colored balls, as the drawing is without replacement.

So, the probability of drawing a green ball next is 8/22.

Now, there are 10 blue balls, but a total of 21 colored balls left, because the draw is without replacement.

So, the probability of drawing a blue ball next is 10/21.

So, the required probability is

The probability of drawing a red, then a green and then a blue ball is 0.0376.

Question (b)

Three balls are drawn simultaneously from the urn, without replacement.

We have to find the probability that the colors of the selected balls will be different.

Now, from 23 total balls, 3 can be drawn without replacement, in (23 C 3) ways.

Now, if the selected balls are of different colors, then one ball has to be red, one green and one blue.

So, the red ball can come up in 5 ways, the green ball can come up in 8 ways and the blue ball in 10 ways.

So, the required probability is

So, the probability of getting balls of different colors is 0.1739.


Related Solutions

Urn 1 contains 8 green balls and 10 red balls. Urn 2 contains 7 green balls...
Urn 1 contains 8 green balls and 10 red balls. Urn 2 contains 7 green balls and 5 red balls. A die is rolled, if a 1 or 2 is rolled, a ball is chosen from urn 1, if a 3, 4, 5, or 6 is rolled, a balls is chosen from urn 2. What is the probability of selecting a green ball? Please show all work.
An urn contains 5 green balls and 8 red balls. One of the balls is drawn...
An urn contains 5 green balls and 8 red balls. One of the balls is drawn at random. The drawn ball is returned to the urn with 3 additional balls of the same color. A second ball is drawn from the newly constituted urn. a. What is the probability the second ball is green? b. Given that the second ball was red, what is the probability that the first ball was green?
1) An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out...
1) An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out 3 balls at a random, without replacement. You win $2 for each green ball you select and lose $3 for each red ball you select. Let the random variable X denote the amount you win, determine the probability mass function of X. 2) Each of the 60 students in a class belongs to exactly one of the three groups A,B, or C. The membership...
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at...
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at a time, with replacement, until a red one is obtained. What is the probability that exactly k draws are needed? What is the probability that at least k draws are needed? Define a random variable associated with this experiment. Determine its probability mass function and cumulative distribution function, sketch their graphs. Find the expectation, variance and standard deviation of X.
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and 6 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and 6 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
An urn contains red and green colored balls. You draw a sample of five balls from...
An urn contains red and green colored balls. You draw a sample of five balls from the urn. (a) Suppose the urn contains 18 balls, half of which are red. What is the probability that the sample contains a red ball? (b) Suppose the urn contains 144 balls, half of which are red. What is the probability that the sample contains a red ball? (c) Suppose the urn contains 144 balls, 10 of which are red. What is the probability...
An urn contains 5 red balls and 5 blue balls. ​(a) If 3 balls are selected...
An urn contains 5 red balls and 5 blue balls. ​(a) If 3 balls are selected all at​ once, what is the probability that 2 are blue and 1 is​ red? ​(b) If 3 balls are selected by pulling out a​ ball, noting its​ color, and putting it back in the urn before the next​ section, what is the probability that only the first and third balls drawn are​ blue? ​ (c) If 3 balls are selected one at a...
Urn 1 contains 10 red balls, 5 green balls and 12 orange. Inside Urn 2 there...
Urn 1 contains 10 red balls, 5 green balls and 12 orange. Inside Urn 2 there are 7 red, 13 green, and 20 orange balls. Flip a coin to choose the urn, so there is a 55% chance to heads, you pick urn 1. If you pick tails, you pick urn 2. Then pick a ball from one of the urns after you flip. If you choose an orange ball, pick again but do this only once. a) Draw a...
An urn contains 4 red, 5 blue, 2 yellow, and 9 green balls. A group of...
An urn contains 4 red, 5 blue, 2 yellow, and 9 green balls. A group of 5 balls is selected at random without replacement. What is the probability that the sample contains: a. atleast one of each color? b. at most 3 green balls?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT