In: Statistics and Probability
Callahan (2009) demonstrated that Tai Chi can significantly
reduce symptoms for individuals with arthritis. Participants were
18 years old or older with doctor-diagnosed arthritis. Self-reports
of pain and stiffness were measured at the beginning of an 8-week
Tai Chi course and again at the end. Supposed that the data
produced an average decrease in pain and stiffness of MD=7.5 points
with a standard deviation of 20.5 for a sample of n=40
participants
a.) Use a two-tailed test with alpha =.05 to determine whether the
tai chi had a significant effect on pain and stiffness.
b.) compute Cohen's D to measure the size of the treatment effect.
a)
mean of difference ,    D̅ =   
7.500          
       
          
           
   
std dev of difference , Sd =       
20.5000          
       
          
           
   
std error , SE = Sd / √n =    20.5000   /
√   40   =   3.2413  
   
          
           
   
t-statistic = (D̅ - µd)/SE = (   7.5  
-   0   ) /    3.2413  
=   2.314
          
           
   
Degree of freedom, DF=   n - 1 =   
39          
       
t-critical value , t* =    ±  
2.0227   [excel function: =t.inv.2t(α,df) ]   
           
          
           
   
p-value =       
0.0260   [excel function: =t.dist.2t(t-stat,df)
]           
   
Decision:   p-value <α , Reject null
hypothesis          
           
b)
  
cohen's d = |Dbar/ std dev| =    0.37