Question

In: Chemistry

For 260.0 mL of a buffer solution that is 0.2869 M in CH3CH2NH2 and 0.2669 M...

For 260.0 mL of a buffer solution that is 0.2869 M in CH3CH2NH2 and 0.2669 M in CH3CH2NH3Cl, calculate the initial pH and the final pH after adding 0.0200 mol of NaOH(Kb=5.6⋅10−4).

Solutions

Expert Solution

Ans - Since this is a buffer solution, we can use the Henderson Hasselbalch eqn. to calculate the pH
pKa = 10.636 for CH3CH2NH3Cl
pH = pKa + log([CH3CH2NH2] / [CH3CH2NH3Cl]) = 10.636 + Log ( 0.2869 / 0.2669 ) = 10.667

Final pH:
moles CH3CH2NH2 = 0.260 L x 0.2869 = 0.0746 M

moles CH3CH2NH3Cl = 0.260 x .2669 = .0693 M

CH3CH2NH3+ + OH- = CH3CH2NH2 + H2O

moles CH3CH2NH3+ = .0693 - .02 = .0493

moles CH3CH2NH2 = 0.0746 + .02 = .0946

Can use the Henderson Hasselbalch eqn. since this is still a healthy buffer (still decent amount of base and acid present).

[CH3CH2NH3+] = 0.0493 / .260 = 0.189 M

[CH3CH2NH2] = .0946 / .260 = 0.363 M

pH = 10.636 + log(.363 / 0.189) = 10.91


Related Solutions

For 220.0 mL of a buffer solution that is 0.2869 M in CH3CH2NH2 and 0.2624 M...
For 220.0 mL of a buffer solution that is 0.2869 M in CH3CH2NH2 and 0.2624 M in CH3CH2NH3Cl, calculate the initial pH and the final pH after adding 0.0200 mol of NaOH(Kb=5.6⋅10−4).
For 220.0 mL of a buffer solution that is 0.3028 M in CH3CH2NH2 and 0.2783 M...
For 220.0 mL of a buffer solution that is 0.3028 M in CH3CH2NH2 and 0.2783 M in CH3CH2NH3Cl, calculate the initial pH and the final pH after adding 0.0100 mol of NaOH(Kb=5.6⋅10−4).
For 200.0 mL of a buffer solution that is 0.2975 M in CH3CH2NH2 and 0.2730 M...
For 200.0 mL of a buffer solution that is 0.2975 M in CH3CH2NH2 and 0.2730 M in CH3CH2NH3Cl, calculate the initial pH and the final pH after adding 0.0100 mol of NaOH(Kb=6.46⋅10−4).
For 550.0 mL of a buffer solution that is 0.185 M in CH3CH2NH2 and 0.175 M...
For 550.0 mL of a buffer solution that is 0.185 M in CH3CH2NH2 and 0.175 M in CH3CH2NH3Cl, calculate the initial pH and the final pH after adding 0.020 mol of HCl. Express your answers using two decimal places separated by a comma.
For 540.0mL of a buffer solution that is 0.165M in CH3CH2NH2 and 0.155M in CH3CH2NH3Cl, calculate...
For 540.0mL of a buffer solution that is 0.165M in CH3CH2NH2 and 0.155M in CH3CH2NH3Cl, calculate the initial pH and the final pH after adding 0.020mol of HCl.
If 100.mL of 0.035 M HCl solution is added to 220.mL of a buffer solution which...
If 100.mL of 0.035 M HCl solution is added to 220.mL of a buffer solution which is 0.20M in NH3 and 0.18M in NH4Cl, what will be the pH of the new solution? The Kb of NH3 is 1.8x10^-5. Please explain how the answer was obtained. Thank you!
11 mL of 0.0100 M HCl are added to 25.0 mL of a buffer solution that...
11 mL of 0.0100 M HCl are added to 25.0 mL of a buffer solution that is 0.010 M HC2H3O2 and 0.08 M C2H3O2-.  What is the pH of the resulting solution?
A buffer solution was prepared by mixing 300.0 mL of a 0.200 M solution of hydroxylamine...
A buffer solution was prepared by mixing 300.0 mL of a 0.200 M solution of hydroxylamine (OHNH2, Kb = 1.1 × 10-8) and 250.0 mL of a 0.300 M solution of its hydrochloride salt (OHNH3+ Cl- ). Calculate the pH of the solution after the addition of 1.08 g of solid NaOH (molar mass = 40.00 g/mol). Assume that there is no volume change upon the addition of solid.
A buffer solution was prepared by mixing 300.0 mL of a 0.200 M solution of hydroxylamine...
A buffer solution was prepared by mixing 300.0 mL of a 0.200 M solution of hydroxylamine (OHNH2, Kb = 1.1 × 10-8) and 250.0 mL of a 0.300 M solution of its hydrochloride salt (OHNH3+ Cl- ). Calculate the pH of the solution after the addition of 1.08 g of solid NaOH (molar mass = 40.00 g/mol). Assume that there is no volume change upon the addition of solid. A. 8.22    B. 5.55 C. 6.30 D. 5.78
A 130.0 −mL buffer solution is 0.105 M in NH3 and 0.135 M in NH4Br. A)...
A 130.0 −mL buffer solution is 0.105 M in NH3 and 0.135 M in NH4Br. A) What mass of HCl can this buffer neutralize before the pH falls below 9.00? B) If the same volume of the buffer were 0.250 M in NH3 and 0.390 M in NH4Br, what mass of HCl could be handled before the pH falls below 9.00?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT