In: Statistics and Probability
4. the researcher wishes to use numerical descriptive measures to summarize the data on each of the two variables: hours worked per week and income earned per year.
Notes: Use QUARTILE.EXC command to generate the three quartiles.
Compute the correlation coefficient using the relevant Excel function to measure the direction and strength of the linear relationship between the two variables. Display and interpret the correlation value.
Data of Hours worked and yearly income as below
Yearly Income ('000's) | Hours Per Week |
43.8 | 18 |
44.5 | 13 |
44.8 | 18 |
46.0 | 25.5 |
41.2 | 11.5 |
43.3 | 18 |
43.6 | 16 |
46.2 | 27 |
46.8 | 27.5 |
48.2 | 30.5 |
49.3 | 24.5 |
53.8 | 32.5 |
53.9 | 25 |
54.2 | 23.5 |
50.5 | 30.5 |
51.2 | 27.5 |
51.5 | 28 |
52.6 | 26 |
52.8 | 25.5 |
52.9 | 26.5 |
49.5 | 33 |
49.8 | 15 |
50.3 | 27.5 |
54.3 | 36 |
55.1 | 27 |
55.3 | 34.5 |
61.7 | 39 |
62.3 | 37 |
63.4 | 31.5 |
63.7 | 37 |
55.5 | 24.5 |
55.6 | 28 |
55.7 | 19 |
58.2 | 38.5 |
58.3 | 37.5 |
58.4 | 18.5 |
59.2 | 32 |
59.3 | 35 |
59.4 | 36 |
60.5 | 39 |
56.7 | 24.5 |
57.8 | 26 |
63.8 | 38 |
64.2 | 44.5 |
55.8 | 34.5 |
56.2 | 34.5 |
64.3 | 40 |
64.5 | 41.5 |
64.7 | 34.5 |
66.1 | 42.3 |
72.3 | 34.5 |
73.2 | 28 |
74.2 | 38 |
68.5 | 31.5 |
69.7 | 36 |
71.2 | 37.5 |
66.3 | 22 |
66.5 | 33.5 |
66.7 | 37 |
74.8 | 43.5 |
62.0 | 20 |
57.3 | 35 |
55.3 | 24 |
56.1 | 20 |
61.5 | 41 |
Let yearly income be 'X' and hours per week be 'Y'
x | Y | |||
1 | 41.2 | 1 | 11.5 | |
2 | 43.3 | 2 | 13 | |
3 | 43.6 | 3 | 15 | |
4 | 43.8 | 4 | 16 | |
5 | 44.5 | 1 | 18 | |
6 | 44.8 | 2 | 18 | |
7 | 46 | 3 | 18 | |
8 | 46.2 | 4 | 18.5 | |
9 | 46.8 | 5 | 19 | |
10 | 48.2 | 6 | 20 | |
11 | 49.3 | 7 | 20 | |
12 | 49.5 | 8 | 22 | |
13 | 49.8 | 9 | 23.5 | |
14 | 50.3 | 10 | 24 | |
15 | 50.5 | 11 | 24.5 | |
16 | 51.2 | 12 | 24.5 | |
17 | 51.5 | 13 | 24.5 | |
18 | 52.6 | 14 | 25 | |
19 | 52.8 | 15 | 25.5 | |
20 | 52.9 | 16 | 25.5 | |
21 | 53.8 | 17 | 26 | |
22 | 53.9 | 18 | 26 | |
23 | 54.2 | 19 | 26.5 | |
24 | 54.3 | 20 | 27 | |
25 | 55.1 | 21 | 27 | |
26 | 55.3 | 22 | 27.5 | |
27 | 55.3 | 23 | 27.5 | |
28 | 55.5 | 24 | 27.5 | |
29 | 55.6 | 25 | 28 | |
30 | 55.7 | 26 | 28 | |
31 | 55.8 | 27 | 28 | |
32 | 56.1 | 28 | 30.5 | |
33 | 56.2 | 29 | 30.5 | |
34 | 56.7 | 30 | 31.5 | |
35 | 57.3 | 31 | 31.5 | |
36 | 57.8 | 32 | 32 | |
37 | 58.2 | 33 | 32.5 | |
38 | 58.3 | 34 | 33 | |
39 | 58.4 | 35 | 33.5 | |
40 | 59.2 | 36 | 34.5 | |
41 | 59.3 | 37 | 34.5 | |
42 | 59.4 | 38 | 34.5 | |
43 | 60.5 | 39 | 34.5 | |
44 | 61.5 | 40 | 34.5 | |
45 | 61.7 | 41 | 35 | |
46 | 62 | 42 | 35 | |
47 | 62.3 | 43 | 36 | |
48 | 63.4 | 44 | 36 | |
49 | 63.7 | 45 | 36 | |
50 | 63.8 | 46 | 37 | |
51 | 64.2 | 47 | 37 | |
52 | 64.3 | 48 | 37 | |
53 | 64.5 | 49 | 37.5 | |
54 | 64.7 | 50 | 37.5 | |
55 | 66.1 | 51 | 38 | |
56 | 66.3 | 52 | 38 | |
57 | 66.5 | 53 | 38.5 | |
58 | 66.7 | 54 | 39 | |
59 | 68.5 | 55 | 39 | |
60 | 69.7 | 56 | 40 | |
61 | 71.2 | 57 | 41 | |
62 | 72.3 | 58 | 41.5 | |
63 | 73.2 | 59 | 42.3 | |
64 | 74.2 | 60 | 43.5 | |
65 | 74.8 | 61 | 44.5 | |
Total | 3726.3 | Total | 1941.8 |
SD = Mean
=
range = Max - min
For quartiles we first arrange the data in ascending order. Then using the following formula we find the quartiles
Where Q2 is the median
Here for example if Q1 = 6.5th value then
Q1 = 6th + 0.5 (7th - 6th)
th value | |
Q1 | 16.5 |
Q2 | 33 |
Q3 | 49.5 |
Yearly Income ('000's) | Hours Per Week | |||
Mean | 57.3277 | Mean | 29.87385 | |
Standard Deviation | 8.2670 | Standard Deviation | 8.045287 | |
Sample Variance | 68.3439 | Sample Variance | 64.72665 | |
Range | 33.6 | Range | 33 | |
Minimum | 41.2 | Minimum | 11.5 | |
Maximum | 74.8 | Maximum | 44.5 | |
Q1 | 51.35 | Q1 | 24.5 | |
Q2 | 56 | Q2 | 30.5 | |
Q3 | 63.75 | Q3 | 36.5 | |
Yearly Income ('000's) (X) | Hours Per Week (Y) | X^2 | Y^2 | XY | |
1 | 43.8 | 18 | 1918.44 | 324 | 788.4 |
2 | 44.5 | 13 | 1980.25 | 169 | 578.5 |
3 | 44.8 | 18 | 2007.04 | 324 | 806.4 |
4 | 46 | 25.5 | 2116 | 650.25 | 1173 |
5 | 41.2 | 11.5 | 1697.44 | 132.25 | 473.8 |
6 | 43.3 | 18 | 1874.89 | 324 | 779.4 |
7 | 43.6 | 16 | 1900.96 | 256 | 697.6 |
8 | 46.2 | 27 | 2134.44 | 729 | 1247.4 |
9 | 46.8 | 27.5 | 2190.24 | 756.25 | 1287 |
10 | 48.2 | 30.5 | 2323.24 | 930.25 | 1470.1 |
11 | 49.3 | 24.5 | 2430.49 | 600.25 | 1207.85 |
12 | 53.8 | 32.5 | 2894.44 | 1056.25 | 1748.5 |
13 | 53.9 | 25 | 2905.21 | 625 | 1347.5 |
14 | 54.2 | 23.5 | 2937.64 | 552.25 | 1273.7 |
15 | 50.5 | 30.5 | 2550.25 | 930.25 | 1540.25 |
16 | 51.2 | 27.5 | 2621.44 | 756.25 | 1408 |
17 | 51.5 | 28 | 2652.25 | 784 | 1442 |
18 | 52.6 | 26 | 2766.76 | 676 | 1367.6 |
19 | 52.8 | 25.5 | 2787.84 | 650.25 | 1346.4 |
20 | 52.9 | 26.5 | 2798.41 | 702.25 | 1401.85 |
21 | 49.5 | 33 | 2450.25 | 1089 | 1633.5 |
22 | 49.8 | 15 | 2480.04 | 225 | 747 |
23 | 50.3 | 27.5 | 2530.09 | 756.25 | 1383.25 |
24 | 54.3 | 36 | 2948.49 | 1296 | 1954.8 |
25 | 55.1 | 27 | 3036.01 | 729 | 1487.7 |
26 | 55.3 | 34.5 | 3058.09 | 1190.25 | 1907.85 |
27 | 61.7 | 39 | 3806.89 | 1521 | 2406.3 |
28 | 62.3 | 37 | 3881.29 | 1369 | 2305.1 |
29 | 63.4 | 31.5 | 4019.56 | 992.25 | 1997.1 |
30 | 63.7 | 37 | 4057.69 | 1369 | 2356.9 |
31 | 55.5 | 24.5 | 3080.25 | 600.25 | 1359.75 |
32 | 55.6 | 28 | 3091.36 | 784 | 1556.8 |
33 | 55.7 | 19 | 3102.49 | 361 | 1058.3 |
34 | 58.2 | 38.5 | 3387.24 | 1482.25 | 2240.7 |
35 | 58.3 | 37.5 | 3398.89 | 1406.25 | 2186.25 |
36 | 58.4 | 18.5 | 3410.56 | 342.25 | 1080.4 |
37 | 59.2 | 32 | 3504.64 | 1024 | 1894.4 |
38 | 59.3 | 35 | 3516.49 | 1225 | 2075.5 |
39 | 59.4 | 36 | 3528.36 | 1296 | 2138.4 |
40 | 60.5 | 39 | 3660.25 | 1521 | 2359.5 |
41 | 56.7 | 24.5 | 3214.89 | 600.25 | 1389.15 |
42 | 57.8 | 26 | 3340.84 | 676 | 1502.8 |
43 | 63.8 | 38 | 4070.44 | 1444 | 2424.4 |
44 | 64.2 | 44.5 | 4121.64 | 1980.25 | 2856.9 |
45 | 55.8 | 34.5 | 3113.64 | 1190.25 | 1925.1 |
46 | 56.2 | 34.5 | 3158.44 | 1190.25 | 1938.9 |
47 | 64.3 | 40 | 4134.49 | 1600 | 2572 |
48 | 64.5 | 41.5 | 4160.25 | 1722.25 | 2676.75 |
49 | 64.7 | 34.5 | 4186.09 | 1190.25 | 2232.15 |
50 | 66.1 | 42.3 | 4369.21 | 1789.29 | 2796.03 |
51 | 72.3 | 34.5 | 5227.29 | 1190.25 | 2494.35 |
52 | 73.2 | 28 | 5358.24 | 784 | 2049.6 |
53 | 74.2 | 38 | 5505.64 | 1444 | 2819.6 |
54 | 68.5 | 31.5 | 4692.25 | 992.25 | 2157.75 |
55 | 69.7 | 36 | 4858.09 | 1296 | 2509.2 |
56 | 71.2 | 37.5 | 5069.44 | 1406.25 | 2670 |
57 | 66.3 | 22 | 4395.69 | 484 | 1458.6 |
58 | 66.5 | 33.5 | 4422.25 | 1122.25 | 2227.75 |
59 | 66.7 | 37 | 4448.89 | 1369 | 2467.9 |
60 | 74.8 | 43.5 | 5595.04 | 1892.25 | 3253.8 |
61 | 62 | 20 | 3844 | 400 | 1240 |
62 | 57.3 | 35 | 3283.29 | 1225 | 2005.5 |
63 | 55.3 | 24 | 3058.09 | 576 | 1327.2 |
64 | 56.1 | 20 | 3147.21 | 400 | 1122 |
65 | 61.5 | 41 | 3782.25 | 1681 | 2521.5 |
Total | 3726.3 | 1941.8 | 217994.19 | 62151.54 | 114153.68 |
Excel function for correlation coefficient is 'correl(array x,array y)'
Manually correlation coefficient =
Since 'r' is positive and 0.5< r <1
There is strong positve relation between yearly income and weekly hours.