Question

In: Statistics and Probability

The load-bearing capacities (in thousands of pounds) of five transmission line insulators are 64 , 48...

The load-bearing capacities (in thousands of pounds) of five transmission line insulators are 64 , 48 , 19, and 79. Use a sample size of 2 to

a). find the mean and standard deviation of the population.

b). list all samples (with replacement) of the given size from the population and find the mean of

      each.

c). Find he mean and standard deviation of the sampling distribution of sample means.

Solutions

Expert Solution

Solution:


Related Solutions

Assuming that the length of a lossless transmission line with the normalized load impedance of zL...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL = ZL/Z0 = 1 + j1 is l = 2.25λz , there are a total of (A) 2 voltage maxima and 2 voltage minima (B) 2 voltage maxima and 3 voltage minima (C) 3 voltage maxima and 2 voltage minima (D) 4 voltage maxima and 4 voltage minima (E) 4 voltage maxima and 5 voltage minima (F) 5 voltage maxima and 4 voltage minima...
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 −...
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 − j47.5) Ω using a short circuited stub. Use the Smith chart to determine position and length line for the stub? show step by step by hand and draw by hand I want details so I can understand
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 −...
A lossless 50-Ω transmission line is terminated in a load with Z L = (35 − j47.5) Ω using a short circuited stub. Use the Smith chart to determine position and length line for the stub? show step by step I want details so I can understand
A 100 ohms load is connected to a 50 ohms transmission line. Determine the value of...
A 100 ohms load is connected to a 50 ohms transmission line. Determine the value of the reactance to put in series at the input to the line and the length in wavelengths of the shortest transmission line to match with a 50 ohms source.
A) A 150 + j300 Ohm load is connected to a 75 Ohm transmission line. Determine...
A) A 150 + j300 Ohm load is connected to a 75 Ohm transmission line. Determine the value of the reactance to put in parallel at the input to the line and the length in wavelengths of the shortest transmission line to match with a 75 Ohm source. B) Redo A using a short-circuited stub as the equivalent parallel reactance.
8. A 100 W load is connected to a 50 W transmission line. Determine the value...
8. A 100 W load is connected to a 50 W transmission line. Determine the value of the reactance to put in series at the input to the line and the length in wavelengths of the shortest transmision line to match with a 50 W source.
9. A 150 + j300 W load is connected to a 75 W transmission line. Determine...
9. A 150 + j300 W load is connected to a 75 W transmission line. Determine the value of the reactance to put in parallel at the input to the line and the length in wavelengths of the shortest transmission line to match with a 75 W source. Redo problem 9 using a short-circuited stub as the equivalent parallel reactance.
A 50 ohm transmission line has an unknown load impedance ZL. A voltage maximum occurs at...
A 50 ohm transmission line has an unknown load impedance ZL. A voltage maximum occurs at z = -0.15(wavelength). At z = -0.20(wavelength) the real part of the impedance is 30 ohms. Find ZL using the Smith chart.
A lossless transmission line of length l=0.4? is terminated with a complex load impedance Z_L=60+j50 ?...
A lossless transmission line of length l=0.4? is terminated with a complex load impedance Z_L=60+j50 ? and characteristic impedance (Z_0=50 ?). Use Smith Chart to find: The VSWR on the line; The reflection coefficient at the load and its phase angle; The load admittance of the line Y_L in S; The input impedance of the line in ?; The distance to the first voltage minimum from the load in ?; and The distance to the first voltage maximum from the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT