Question

In: Statistics and Probability

. Suppose {et : t = −1, 0, 1, . . .} is a sequence of...

. Suppose {et : t = −1, 0, 1, . . .} is a sequence of iid random variables with mean zero and variance 1. Define a stochastic process by xt = et − 0.5et−1 + 0.5et−2, t = 1, 2, . . .

a. Is xt stationary? Show your work.

b. Is xt weakly dependent? Again, show your work.

Plz help. maybe need use SAS to solve it

Solutions

Expert Solution

d


Related Solutions

Find the length of the curve. 2  t i + et j + e−t k,     0 ≤...
Find the length of the curve. 2  t i + et j + e−t k,     0 ≤ t ≤ 5
2. Let {Zt , t = 0, ±1, ±2, ...} be a sequence of independent random...
2. Let {Zt , t = 0, ±1, ±2, ...} be a sequence of independent random variables, each with mean EZt = 0 and variance Var(Zt) = σ 2 . Define Xt = ZtZt−1 + Zt−2. • Compute the mean and the covariance function for Xt . • Is {Xt} weakly stationary? Explain why.
Suppose that e(t) is a piecewise defined function e (t) = 0 if 0 ≤ t...
Suppose that e(t) is a piecewise defined function e (t) = 0 if 0 ≤ t < 3 and e(t) = 1 if 3 ≤ t Solve y’’+ 9y = e(t) y(0) = 1 y’(0) = 3
f(t) = 1- t 0<t<1 a function f(t) defined on an interval 0 < t <...
f(t) = 1- t 0<t<1 a function f(t) defined on an interval 0 < t < L is given. Find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
y''-5y'+4y=et y(0)=3 y'(0)=1/3
y''-5y'+4y=et y(0)=3 y'(0)=1/3
et the present price (in dollars) of a stock be S(0) = $100 per share. Suppose...
et the present price (in dollars) of a stock be S(0) = $100 per share. Suppose its price after time T will be either S(T ) = $110 or $90. (i) Suppose that the risk-free return from time 0 to T is 8%. Find the cost of the call option for the stock with strike price $108 and exercise time T. (ii) Suppose that the risk-free return from time 0 to T is 5%. Find the cost of the call...
Suppose that y′=0.162sin2(ty)+1. Plot y(t) from t=0 to t=4 with y(0)=1.286 using Euler's method with a...
Suppose that y′=0.162sin2(ty)+1. Plot y(t) from t=0 to t=4 with y(0)=1.286 using Euler's method with a step size of 0.4.
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Solve the following differential equations: 1. x"(t)+ x(t)=6sin(2t) ; x(0)=3, x'(0)=1 2.y"(t)- y(t)=4cos(t) ; y(0)+0 ,...
Solve the following differential equations: 1. x"(t)+ x(t)=6sin(2t) ; x(0)=3, x'(0)=1 2.y"(t)- y(t)=4cos(t) ; y(0)+0 , y'(0)=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT