Question

In: Statistics and Probability

Suppose a distribution has a mean of 100 and a standard deviation of 20. Further suppose...

Suppose a distribution has a mean of 100 and a standard deviation of 20. Further suppose that random samples of size n = 100 are taken with replacement from this distribution. The mean of the sampling distribution of sample means is mu subscript x with bar on top end subscript = and the standard deviation of the sampling distribution of sample means is sigma subscript top enclose x end subscript = .

Solutions

Expert Solution

Ans.

Central Limit Theorem (CLT)

The central limit theorem states that the sampling distribution of the mean of any independent, random variable will be normal or nearly normal, if the sample size is large enough.

How large is "large enough"? The answer depends on two factors.

  • Requirements for accuracy. The more closely the sampling distribution needs to resemble a normal distribution, the more sample points will be required.
  • The shape of the underlying population. The more closely the original population resembles a normal distribution, the fewer sample points will be required.

In practice, some statisticians say that a sample size of 30 is large enough when the population distribution is roughly bell-shaped. Others recommend a sample size of at least 40. But if the original population is distinctly not normal (e.g., is badly skewed, has multiple peaks, and/or has outliers), researchers like the sample size to be even larger.

Here, Mean () = 100

Standard Deviation () = 20

Sample size (n) = 100 > 40

Hence , Sampling Distribution :-

Mean of Sampling Distribution:-

Standard Deviation of Sampling Distribution:-


Related Solutions

Suppose x has a distribution with a mean of 80 and a standard deviation of 20....
Suppose x has a distribution with a mean of 80 and a standard deviation of 20. Random samples of size n = 64 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 75. z = (c) Find P(x < 75). (Round your answer to four decimal places.) P(x < 75)...
If an IQ distribution is normal and has a mean of 100 and a standard deviation...
If an IQ distribution is normal and has a mean of 100 and a standard deviation of 15, then 99% of all those taking the test scored between IQ's of A. 0 and 150 B. 55 and 145 C. 92.5 and 107.5
A population distribution of score has a mean = 100 and a standard deviation of 10....
A population distribution of score has a mean = 100 and a standard deviation of 10. Researchers plan to take a sample size of N=25. Based on the central limit theorem, 68.26% of all possible means are between the sample means of ______ A) 90 and 100 B) 95 and 100 C) 98 and 102 D) 97 and 103
A frequency distribution has a mean of 200 and a standard deviation of 20. The class...
A frequency distribution has a mean of 200 and a standard deviation of 20. The class limits for one class are 220 up to 240. What is the area associated with the class? Select one: a. -2.0 and -1.0 b. 1.0 and 2.0 c. 0.8185 d. 0.4772 e. 0.1359
Suppose Z has a standard normal distribution with a mean of 0 and standard deviation of...
Suppose Z has a standard normal distribution with a mean of 0 and standard deviation of 1. The probability that Z is less than 1.15 is
Suppose x has a distribution with a mean of 70 and a standard deviation of 52....
Suppose x has a distribution with a mean of 70 and a standard deviation of 52. Random samples of size n = 64 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 83. z = (c) Find P(x < 83). (Round your answer to four decimal places.) P(x < 83)...
Suppose x has a distribution with a mean of 70 and a standard deviation of 3....
Suppose x has a distribution with a mean of 70 and a standard deviation of 3. Random samples of size n = 36 are drawn. (a) Describe the x bar distribution. -x bar has an unknown distribution. -x bar has a binomial distribution. -x bar has a Poisson distribution. -x bar has a geometric distribution. -x bar has a normal distribution. -x bar has an approximately normal distribution. Compute the mean and standard deviation of the distribution. (For each answer,...
Suppose xx has a distribution with a mean of 205 and a standard deviation of 32....
Suppose xx has a distribution with a mean of 205 and a standard deviation of 32. Random samples of size n=64n=64 are drawn. a) Describe the ¯xx¯ distribution. ¯xx¯ will have a normal distribution since the sample size n≥30n≥30. ¯xx¯ will have a uniform distribution since the xx-distribution is normal. ¯xx¯ will have a uniform distribution since the sample size n≥30n≥30. ¯xx¯ will have a normal distribution since the xx-distribution is normal. b) Compute the mean of the ¯xx¯-distribution. μ¯x=μx¯=...
Suppose x has a distribution with a mean of 90 and a standard deviation of 36....
Suppose x has a distribution with a mean of 90 and a standard deviation of 36. Random samples of size n = 64 are drawn. (a) Describe the x-bar distribution and compute the mean and standard deviation of the distribution. x-bar has _____ (an approximately normal, a binomial, an unknown, a normal, a Poisson, a geometric) distribution with mean μx-bar = _____ and standard deviation σx-bar = _____ . (b) Find the z value corresponding to x-bar = 99. z...
Suppose x has a distribution with a mean of 40 and a standard deviation of 21....
Suppose x has a distribution with a mean of 40 and a standard deviation of 21. Random samples of size n = 36 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 47. z = (c) Find P(x < 47). (Round your answer to four decimal places.) P(x < 47)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT