Question

In: Economics

Two firms are participating in a Stackelberg duopoly. The demand function in the market is given...

Two firms are participating in a Stackelberg duopoly. The demand function in the market is given by Q = 2000 − 2P . Firm 1’s total cost is given by C1(q1) = (q1)^2 and Firm 2’s total cost is given by C2(q2) = 100q2. Firm 1 is the leader and Firm 2 is the follower.

(1) Write down the inverse demand function and the maximization problem for Firm 1 given that Firm 2 is expected to produce R2(q1).

(2) Compute the reaction function R2(q1) for Firm 2.
(3) Find the market price and the quantities supplied by the firms in the Stackelberg

equilibrium of this game.

Solutions

Expert Solution


Related Solutions

Two firms are participating in a Cournot duopoly. The demand function in the market is given...
Two firms are participating in a Cournot duopoly. The demand function in the market is given by Q=430−2P. Each firm’s total cost is given by C(q)=5q+q2. (1) Write down the inverse demand function and the maximization problem for Firm 1 given that Firm 2 is expected to produce q2^e. (2) Write down the reaction function q1(q2^e) for Firm 1. (3) Find the market price, quantities supplied, and firms’ profits in the Cournot equilibrium of this game.
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P...
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are QL = 9, QF = 4.5 QL = 9, QF = 10.5 QL = 6, QF = 3 QL = 4, QF = 2 Please help/ explain. Thank you
Question 4 Two firms compete as a Stackelberg duopoly. The demand they face is P =...
Question 4 Two firms compete as a Stackelberg duopoly. The demand they face is P = 40 − Q. The cost function for each firm is C(Q) = 4Q. What are the profits of the two firms? I believe the answer is πL = $162; πF = $81. however I need clear steps to understand how to understand the process.
Two firms compete as a Stackellberg duopoly. The inverse market demand function they face is P...
Two firms compete as a Stackellberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 300, and firm 2's cost function is c(q2) = 6q2 + 600 (such that each firm has MC = 6). Q1: The outputs of the two firms in Cournot-Nash equilibrium will be: 1) q1 = 45 and q2 = 0. 2) q1 = 30 and q2 = 30. 3) q1 = 45...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 0.5q12, and firm 2's cost function is c(q2) = 6q2 + 0.5q22 (such that each firm has MC = 6 + q). Q1: The Cournot best-response function for firm 1 will be: 1) q1 = 22.5 − q2/4 2) q1 = 30 − q2/3 3) q1 = 45 − q2/2 4) q1...
In a duopoly market with two identical firms, the market demand curve is: P=50-2Q And the...
In a duopoly market with two identical firms, the market demand curve is: P=50-2Q And the marginal cost and average cost of each firm is constant: AC=MC=2 a. Solve for firm 1’s reaction curve and graph b. Solve for firm 2’s reaction curve and graph c. Solve for each firm’s Q and P in a cournot equilibrium and show on your graph i. What is the profit for each firm?
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P...
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P = 300 – 4(Q1 + Q2), where P is the market price, Q1 is the quantity demanded by Firm 1, and Q2 is the quantity demanded by Firm 2. The marginal cost and average cost for each firm is constant; AC=MC = $77. The cournot-duopoly equilibrium profit for each firm is _____.
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P...
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P = 300 – 4(Q1 + Q2), where P is the market price, Q1 is the quantity demanded by Firm 1, and Q2 is the quantity demanded by Firm 2. The marginal cost and average cost for each firm is constant; AC=MC = $68. The cournot-duopoly equilibrium profit for each firm is _____. Hint: Write your answer to two decimal places.
1) Demand in a market dominated by two firms (a Cournot duopoly) is determined according to:...
1) Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P = 300 – 4(Q1 + Q2), where P is the market price, Q1 is the quantity demanded by Firm 1, and Q2 is the quantity demanded by Firm 2. The marginal cost and average cost for each firm is constant; AC=MC = $65. The cournot-duopoly equilibrium quantity produced by each firm is _____. Hint: Write your answer to two decimal places. 2) Demand...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT