Question

In: Statistics and Probability

2. An independent random sampling design was used to compare the means of six treatments based...

2. An independent random sampling design was used to compare the means of six treatments based on samples of four observations per treatment. The pooled estimator of 2 is 9.12, and the sample means follow: These are 6 means given below.
Mean x 1 =101.6 Mean x 2 = 98.4 mean x 3= 112.3
Mean x 4 =92.9 Mean x 5= 104.2 Mean x 6 =113.8
a. Give the value of that you would use to make pairwise comparisons of the treatment means for a $ .05.
b. Rank the treatment means using pairwise comparisons

Solutions

Expert Solution

I have answered the question below

Please up vote for the same and thanks!!!

Do reach out in the comments for any queries

Answer:


Related Solutions

In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population with the following results: Sample 1 Sample 2 Sample Mean = 5275 Sample Mean = 5240 s1 = 150 s2 = 200 To test the null hypothesis H0: µ1 - µ2 = 0 versus the alternative hypothesis Ha: µ1 - µ2 ╪ 0 versus the alternative hypothesis at the 0.05 level of significance, the most accurate statement is:
In order to compare the means of two populations, independent random samples of 424 observations are...
In order to compare the means of two populations, independent random samples of 424 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯1=5169 x¯2=5417 s1=135 s2=130 Use a 96% confidence interval to estimate the difference between the population means (μ1−μ2). ? ≤(μ1−μ2)≤ ? Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using α=0.04, give the following: the test statistic z = postive critical z score = negative critical z score = The...
In order to compare the means of two​ populations, independent random samples of 395 observations are...
In order to compare the means of two​ populations, independent random samples of 395 observations are selected from each​ population, with the results found in the table to the right. Complete parts a through e below. Sample 1 Sample 2 x1=5,294 x2=5,261 s1 =153 s2=197 a. Use a​ 95% confidence interval to estimate the difference between the population means left parenthesis mu 1 minus mu 2 right parenthesisμ1−μ2. Interpret the confidence interval.The confidence interval is ​ ​(Round to one decimal...
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population with the following results: Sample 1 Sample 2 Sample Mean = 5275 Sample Mean = 5240 s1 = 150 s2 = 200 To test the null hypothesis H0: µ1 - µ2 = 0 versus the alternative hypothesis Ha: µ1 - µ2 ╪ 0 versus the alternative hypothesis at the 0.05 level of significance, the most accurate statement is The value...
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population, with the results found in the table to the right. Complete parts a through e. Xbar 1: 5275 s1: 148 Xbar 2: 5240 s2: 210 a. use a 95% confidence interval to estimate the difference between the population means (u1 - u2). Interpret the confidence interval. b. test the null hypothesis H0: (u1 - u2) = 0 versus the alternative...
In order to compare the means of two populations, independent random samples of 400 observations are...
In order to compare the means of two populations, independent random samples of 400 observations are selected from each population, with the results found in the table to the right. Complete parts a through e. Sample 1 x1 = 5,265 s1 = 157 Sample 2 x2 = 5,232 s2 = 203 a. use a 95% confidence interval to estimate the difference between the population means (u1 - u2). Interpret the confidence interval. b. test the null hypothesis H0: (u1 -...
n order to compare the means of two populations, independent random samples of 475 observations are...
n order to compare the means of two populations, independent random samples of 475 observations are selected from each population, with the following results: Sample 1 Sample 2 ?⎯⎯⎯1=5228 ?⎯⎯⎯2=5165 ?1=120 ?2=160 (a) Use a 97 % confidence interval to estimate the difference between the population means (?1−?2). ≤(?1−?2)≤ (b) Test the null hypothesis: ?0:(?1−?2)=0 versus the alternative hypothesis: ??:(?1−?2)≠0. Using ?=0.03, give the following: (i) the test statistic ?= 1.963 (ii) the positive critical ? score (iii) the negative...
In order to compare the means of two populations, independent random samples are selected from each...
In order to compare the means of two populations, independent random samples are selected from each population, with the results shown in the table below. Use these data to construct a 98% confidence interval for the difference in the two population means. Sample 1 Sample 2 Sample size 500 400 Sample mean 5,280 5,240 Sample standard dev. 150 200
Compare and contrast simple random sampling, stratified random sampling, and systematic sampling. Draw diagrams to show...
Compare and contrast simple random sampling, stratified random sampling, and systematic sampling. Draw diagrams to show an example of each. What steps should be carried out to perform a simple random sample?
1. This question takes you through the design-based approach to sorting out sampling distributions, their means...
1. This question takes you through the design-based approach to sorting out sampling distributions, their means and variances, and the estimation of these quantities when you sample with and without replacement. Consider a population of 5 individuals. The variable is their annual income in 1000s of dollars per year, and you want to estimate the population mean income based on a random sample of size two. The values of income are as follows: Individual Income A 80 B 18 C...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT