Question

In: Statistics and Probability

The paired values represent the weights (carats) and prices (dollars) of randomly selected diamonds. Weight 0.2...

The paired values represent the weights (carats) and prices (dollars) of randomly selected diamonds.

Weight 0.2 0.4 0.5 0.6 0.9 0.7 0.8
Price 610 1354 1343 1752 5605 2277

2600

39. Compute the least squares regression line for the predicted price for a given weight.

40. Calculate the correlation coefficient between the two variables.

Please show work using excel functions!

Solutions

Expert Solution

We can use here Excel for regression equation

Step 1) Enter data in Excel .

Step 2) Data >>Data analysis >>Regression >>Select y (Price) and x (Weight) values separately >>Ok

Question 39)

Regression equation is,

i.e. Price= 5743.77*Weight-1144.07

Question 40) In regression output = Correlation coefficient = Multiple R= 0.849

or

We can directly calculate correlation coefficient by using Excel.


Step 1)  Enter data in Excel.


Step 2 )  Then use =CORREL command and select two separate column data  >> ok


Related Solutions

The table below lists weights​ (carats) and prices​ (dollars) of randomly selected diamonds. Find the​ (a)...
The table below lists weights​ (carats) and prices​ (dollars) of randomly selected diamonds. Find the​ (a) explained​ variation, (b) unexplained​ variation, and​ (c) indicated prediction interval. There is sufficient evidence to support a claim of a linear​ correlation, so it is reasonable to use the regression equation when making predictions. For the prediction​ interval, use a​ 95% confidence level with a diamond that weighs 0.8 carats. Weight 0.3 0.4 0.5 0.5 1.0 0.7 Price ​$517 ​$1163 ​$1350 ​$1410 ​$5672 ​$2278...
The table below lists weights​ (carats) and prices​ (dollars) of randomly selected diamonds. Find the​ (a)...
The table below lists weights​ (carats) and prices​ (dollars) of randomly selected diamonds. Find the​ (a) explained​ variation, (b) unexplained​ variation, and​ (c) indicated prediction interval. There is sufficient evidence to support a claim of a linear​ correlation, so it is reasonable to use the regression equation when making predictions. For the prediction​ interval, use a​ 95% confidence level with a diamond that weighs 0.8 carats. Weight   Price 0.3   520 0.4   1171 0.5   1336 0.5   1425 1.0   5671 0.7   2278
The paired data below consists of heights and weights of 6 randomly selected adults. The equation...
The paired data below consists of heights and weights of 6 randomly selected adults. The equation of the regression line is y-hat = -181.342 + 144.46x and the standard error of estimate is se=5.0015. Find the 95% prediction interval for the weight of a person whose height is 1.75 m. x height (meters) y weight (kg) 1.61 54 1.72 62 1.78 70 1.80 84 1.67 61 1.88 92
The accompanying data table contains the listed prices and weights of the diamonds in 30 rings...
The accompanying data table contains the listed prices and weights of the diamonds in 30 rings offered for sale in a newspaper. The prices are in​ dollars, with the weights in carats. Formulate the regression model with price as the response and weight as the explanatory variable. Complete parts​ (a) and​ (b) below. Weight (Carat) Price ($) 0.21 540 0.18 444 0.18 430 0.16 350 0.15 330 0.25 667 0.22 526 0.27 723 0.24 655 0.25 640 0.22 605 0.29...
The accompanying data table contains the listed prices and weights of the diamonds in 30 rings...
The accompanying data table contains the listed prices and weights of the diamonds in 30 rings offered for sale in a newspaper. The prices are in​ dollars, with the weights in carats. Formulate the regression model with price as the response and weight as the explanatory variable. Complete parts​ (a) and​ (b) below. ​(a) Could these data be a sample from a population in which the population intercept is​ zero? Should β0=​0? Conduct a hypothesis test for β0. Identify the...
The table below gives the birth weights of five randomly selected mothers and the birth weights...
The table below gives the birth weights of five randomly selected mothers and the birth weights of their babies. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the birth weight of a baby based on the mother's birth weight. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the...
The table below gives the birth weights of five randomly selected mothers and the birth weights...
The table below gives the birth weights of five randomly selected mothers and the birth weights of their babies. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the birth weight of a baby based on the mother's birth weight. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the...
The table below gives the birth weights of five randomly selected mothers and the birth weights...
The table below gives the birth weights of five randomly selected mothers and the birth weights of their babies. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the birth weight of a baby based on the mother's birth weight. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the...
The paired data below consist of the test scores of 6 randomly selected students and the...
The paired data below consist of the test scores of 6 randomly selected students and the number of hours they studied for the test. Test the claim that there is a linear correlation between hours of study and test scores, with 0.03 significance level and P-Value method. Hours 6 7 5 9 4 10 Score 71 82 58 85 62 91
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean of d ¯ =5.3 d¯=5.3 and a sample standard deviation of sd = 7.2. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ ,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT