Question

In: Statistics and Probability

The table below gives the birth weights of five randomly selected mothers and the birth weights...

The table below gives the birth weights of five randomly selected mothers and the birth weights of their babies. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the birth weight of a baby based on the mother's birth weight. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant.

X: Mother 5.3 6.3 8 8.1 8.8

Y: Baby 5.1 5.4 7.1 8.2 8.9

Step 1 of 6: Find the estimated slope. Round your answer to three decimal places.

Step 2 of 6: Find the estimated y-intercept. Round your answer to three decimal places.

Step 3 of 6: Determine the value of the dependent variable yˆ at x=0.

Step 4 of 6: Find the estimated value of y when x=8.1. Round your answer to three decimal places.

Step 5 of 6: Determine if the statement "All points predicted by the linear model fall on the same line" is true or false.

Step 6 of 6: Find the value of the coefficient of determination. Round your answer to three decimal places.

Solutions

Expert Solution

Step 1 of 6:

Regression equation is given as: y = a + b*x

The slope b can be calculated as follows:

The estimated slope = 1.107

Step 2 of 6:

The y-intercept can be calcualted as follows:

The estimated y-intercept = -1.144

Step 3 of 6:

Regression question can be written as follows:

y = -1.144 + 1.107*x

At x = 0, we get

y = -1.144 + 1.107*)

y = -1.144

Step 4 of 6:

Regression question can be written as follows:

y= -1.144 + 1.107*x

At x = 8.1, we get

y = -1.144 + 1.107*8.1

y = 7.823

Step 5 of 6:

All points predicted by the linear model fall on the same line: True

Step 6 of 6:

r = 0.9574

Coefficient of Determination = r2 = 0.95742

Coefficient of Determination = 0.917


Related Solutions

The table below gives the birth weights of five randomly selected mothers and the birth weights...
The table below gives the birth weights of five randomly selected mothers and the birth weights of their babies. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the birth weight of a baby based on the mother's birth weight. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the...
The table below gives the birth weights of five randomly selected mothers and the birth weights...
The table below gives the birth weights of five randomly selected mothers and the birth weights of their babies. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the birth weight of a baby based on the mother's birth weight. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 36 51...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 36 40...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 39 59...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 35 41...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^=b0+b1x , for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. AGE 29...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the age and bone density for five randomly selected women. Using this...
The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line,y^=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age   Bone Density 38  ...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT