Question

In: Statistics and Probability

3. Consider the following sample data and hypotheses. Assume that the populations are normally distributed with...

3. Consider the following sample data and hypotheses. Assume that the populations are normally distributed with unequal variances.

Sample Mean1 = 262   Sample Variance1 = 23     n1 = 10

Sample Mean2 = 249   Sample Variance2 = 35     n2 = 10

a. Construct the 90% Confidence Interval for the difference of the two means.

H0:  μ1 – μ2 ≤ 0

                       HA:  μ1 – μ2 > 0

b. Using the hypotheses listed above, conduct the following hypothesis test steps. Following the “Roadmap for Hypothesis Testing”, State Null and Alternative Hypotheses; Calculate the Test Statistic; Determine the Critical Value for α = 0.05; Draw a picture complete with Test Statistic, Critical Value & Rejection Zone; Determine the Conclusion reached by the Hypothesis Test using the Critical Value Approach.

Solutions

Expert Solution


Related Solutions

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 242 x−2x−2 = 262 s1 = 28 s2 = 29 n1 = 14 n2 = 14 a-1. Calculate the value of the test statistic under the assumption that the population variances are equal. (Negative values should...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. Use...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. Use Table 2. H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1 = 256 x−2 = 269 s1 = 37 s2 = 15 n1 = 9 n2 = 9 a-1. Calculate the value of the test statistic under the assumption that the population variances are unknown but equal. (Negative values should be indicated by a minus sign. Round all intermediate calculations...
A random sample of five observations from three normally distributed populations produced the following data:
  A random sample of five observations from three normally distributed populations produced the following data: (You may find it useful to reference the F table.) Treatments A   B   C   24       18       31     26       21       27     19       27       21     24       23       16     30    ...
A random sample of five observations from three normally distributed populations produced the following data: (You...
A random sample of five observations from three normally distributed populations produced the following data: (You may find it useful to reference the F table.) Treatments A B C 24 18 31 26 21 27 19 27 21 24 23 16 30 19 30 x−Ax−A = 24.6 x−Bx−B = 21.6 x−Cx−C = 25.0 s2AsA2 = 15.8 s2BsB2 = 12.8 s2CsC2 = 40.5 Click here for the Excel Data File a. Calculate the grand mean. (Round intermediate calculations to at least...
A random sample of five observations from three normally distributed populations produced the following data: (You...
A random sample of five observations from three normally distributed populations produced the following data: (You may find it useful to reference the F table.) Treatments A B C 25 17 22 25 19 26 27 25 26 32 18 30 18 17 27 x−Ax−A = 25.4 x−Bx−B = 19.2 x−Cx−C = 26.2 s2AsA2 = 25.3 s2BsB2 = 11.2 s2CsC2 = 8.2 Treatments A B C 25 17 22 25 19 26 27 25 26 32 18 30 18 17...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −17.1 x−2x−2 = −16.0 s12 = 8.4 s22 = 8.7 n1 = 22 n2 = 24 a. Construct the 90% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 30.9 x−2x−2 = 25.9 σ12 = 93.5 σ22 = 96.0 n1 = 30 n2 = 25 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1 = 24.7 x−2 = 29.6 σ= 95.4 σ = 93.2 n1 = 29 n2 = 27 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table)   x−1x−1 = 23.1   x−2x−2 = 24.7 σ12 = 96.3 σ22 = 93.1 n1 = 33 n2 = 34 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −17.7 x−2x−2 = −16.4 s12 = 8.0 s22 = 8.4 n1 = 20 n2 = 29 a. Construct the 95% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT