Question

In: Statistics and Probability

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table)

H0: μ1μ2 ≥ 0
HA: μ1μ2 < 0

x−1x−1 = 242 x−2x−2 = 262
s1 = 28 s2 = 29
n1 = 14 n2 = 14


a-1. Calculate the value of the test statistic under the assumption that the population variances are equal. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answer to 3 decimal places.)



a-2. Find the p-value.

  • 0.05 p-value < 0.10
  • p-value 0.10
  • p-value < 0.01

  • 0.01 p-value < 0.025
  • 0.025 p-value < 0.05



a-3. Do you reject the null hypothesis at the 5% level?

  • Yes, since the value of the p-value is greater than the significance level.

  • No, since the value of the p-value is greater than the significance level.

  • Yes, since the value of the p-value is less than the significance level.

  • No, since the value of the p-value is less than the significance level.



a-4. Interpret the results at αα = 0.05.

  • We cannot conclude that the population means differ.

  • We conclude that the population means differ.

  • We cannot conclude that population mean 1 is less than population mean 2.

  • We conclude that population mean 1 is less than population mean 2.




b-1. Calculate the value of the test statistic under the assumption that the population variances are unknown and are not equal. (Negative values should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places and final answer to 3 decimal places.)



b-2. Find the p-value.

  • 0.05 p-value < 0.10
  • p-value 0.10
  • p-value < 0.01

  • 0.01 p-value < 0.025
  • 0.025 p-value < 0.05



b-3. Do you reject the null hypothesis at the 5% level?

  • Yes, since the value of the p-value is greater than the significance level.

  • Yes, since the value of the p-value is less than the significance level.

  • No, since the value of the p-value is less than the significance level.

  • No, since the value of the p-value is greater than the significance level.



b-4. Interpret the results at αα = 0.05.

  • We cannot conclude that the population means differ.

  • We conclude that the population means differ.

  • We cannot conclude that population mean 1 is less than population mean 2.

  • We conclude that population mean 1 is less than population mean 2.

Solutions

Expert Solution

a-1)

x1    = 242.000 x2      = 262.000
s1    = 28.000 s2      = 29.000
n1    = 14 n2     = 14
Pooled Variance Sp2=((n1-1)s21+(n2-1)*s22)/(n1+n2-2)= 812.5000
standard error se =Sp*√(1/n1+1/n2)= 10.7736
test stat t =(x1-x2-Δo)/Se= -1.856

a-2)

0.025 p-value < 0.05

a-3)

Yes, since the value of the p-value is less than the significance level.

a-4)

We conclude that population mean 1 is less than population mean 2.

b-1)

standard error se=√(S21/n1+S22/n2)= 10.774
test stat t =(x1-x2o)/Se= -1.856

b-2)

0.025 p-value < 0.05

b-2)

Yes, since the value of the p-value is less than the significance level.

b-4)

We conclude that population mean 1 is less than population mean 2.


Related Solutions

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. Use...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. Use Table 2. H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1 = 256 x−2 = 269 s1 = 37 s2 = 15 n1 = 9 n2 = 9 a-1. Calculate the value of the test statistic under the assumption that the population variances are unknown but equal. (Negative values should be indicated by a minus sign. Round all intermediate calculations...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −17.1 x−2x−2 = −16.0 s12 = 8.4 s22 = 8.7 n1 = 22 n2 = 24 a. Construct the 90% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 30.9 x−2x−2 = 25.9 σ12 = 93.5 σ22 = 96.0 n1 = 30 n2 = 25 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1 = 24.7 x−2 = 29.6 σ= 95.4 σ = 93.2 n1 = 29 n2 = 27 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table)   x−1x−1 = 23.1   x−2x−2 = 24.7 σ12 = 96.3 σ22 = 93.1 n1 = 33 n2 = 34 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −17.7 x−2x−2 = −16.4 s12 = 8.0 s22 = 8.4 n1 = 20 n2 = 29 a. Construct the 95% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 24.0 x−2x−2 = 29.3 σ12 = 90.4 σ22 = 90.5 n1 = 32 n2 = 32 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 27.7 x−2x−2 = 30.1 σ12 = 92.8 σ22 = 87.5 n1 = 24 n2 = 33 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −25.8 x−2x−2 = −16.2 s12 = 8.5 s22 = 8.8 n1 = 26 n2 = 20 a. Construct the 99% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 25.7 x⎯⎯2x¯2 = 30.6 σ12 = 98.2 σ22 = 87.4 n1 = 20 n2 = 25 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT