Question

In: Statistics and Probability

Consider the following data drawn independently from normally distributed populations: (You may find it useful to...

Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table)

x−1x−1 = −17.7 x−2x−2 = −16.4
s12 = 8.0 s22 = 8.4
n1 = 20 n2 = 29


a. Construct the 95% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.)
  



b. Specify the competing hypotheses in order to determine whether or not the population means differ.
  

  • H0: μ1μ2 = 0; HA: μ1μ2 ≠ 0

  • H0: μ1μ2 ≥ 0; HA: μ1μ2 < 0

  • H0: μ1μ2 ≤ 0; HA: μ1μ2 > 0



c. Using the confidence interval from part a, can you reject the null hypothesis?
  

  • Yes, since the confidence interval includes the hypothesized value of 0.

  • Yes, since the confidence interval does not include the hypothesized value of 0.

  • No, since the confidence interval includes the hypothesized value of 0.

  • No, since the confidence interval does not include the hypothesized value of 0.



d. Interpret the results at   αα = 0.05.

  • We cannot conclude that population mean 1 is greater than population mean 2.

  • We conclude that population mean 1 is greater than population mean 2.

  • We cannot conclude that the population means differ.

  • We conclude that the population means differ

Solutions

Expert Solution

Solution:

Part a

Confidence interval for difference between two population means is given as below:

Confidence interval = (X1bar – X2bar) ± t*sqrt[Sp2*((1/n1)+(1/n2))]

Where Sp2 is pooled variance

Sp2 = [(n1 – 1)*S1^2 + (n2 – 1)*S2^2]/(n1 + n2 – 2)

We are given

X1bar = -17.7

X2bar = -16.4

S1^2 = 8

S2^2 = 8.4

n1 = 20

n2 = 29

df = n1 + n2 – 2 = 20 + 29 – 2 = 47

Confidence level = 95%

Critical value t = 2.0117

(by using t-table)

Sp2 = [(n1 – 1)*S1^2 + (n2 – 1)*S2^2]/(n1 + n2 – 2)

Sp2 = [(20 – 1)*8 + (29 – 1)*8.4]/(20 + 29 – 2)

Sp2 = 8.2383

Confidence interval = (X1bar – X2bar) ± t*sqrt[Sp2*((1/n1)+(1/n2))]

Confidence interval = ((-17.7) – (-16.4)) ± 2.0117*sqrt[8.2383*((1/20)+(1/29))]

Confidence interval = -1.3 ± 2.0117*0.8343

Confidence interval = -1.3 ± 1.6783

Lower limit = -1.3 - 1.6783 = -2.9783

Upper limit = -1.3 + 1.6783 = 0.3783

Confidence interval = (-2.98, 0.38)

Part b

H0: μ1 − μ2 = 0; HA: μ1 − μ2 ≠ 0

[Alternative hypothesis is ‘not equal to’, because we want to check whether two means are different or not.]

Part c

No, since the confidence interval includes the hypothesized value of 0.

Part d

We cannot conclude that the population means differ.


Related Solutions

Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −17.1 x−2x−2 = −16.0 s12 = 8.4 s22 = 8.7 n1 = 22 n2 = 24 a. Construct the 90% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 30.9 x−2x−2 = 25.9 σ12 = 93.5 σ22 = 96.0 n1 = 30 n2 = 25 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1 = 24.7 x−2 = 29.6 σ= 95.4 σ = 93.2 n1 = 29 n2 = 27 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table)   x−1x−1 = 23.1   x−2x−2 = 24.7 σ12 = 96.3 σ22 = 93.1 n1 = 33 n2 = 34 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 24.0 x−2x−2 = 29.3 σ12 = 90.4 σ22 = 90.5 n1 = 32 n2 = 32 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 27.7 x−2x−2 = 30.1 σ12 = 92.8 σ22 = 87.5 n1 = 24 n2 = 33 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −25.8 x−2x−2 = −16.2 s12 = 8.5 s22 = 8.8 n1 = 26 n2 = 20 a. Construct the 99% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 25.7 x⎯⎯2x¯2 = 30.6 σ12 = 98.2 σ22 = 87.4 n1 = 20 n2 = 25 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = −10.5 x−2x−2 = −16.8 s12 = 7.9 s22 = 9.3 n1 = 15 n2 = 20 a. Construct the 95% confidence interval for the difference between the population means. Assume the population variances are unknown but equal. (Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 25.7 x⎯⎯2x¯2 = 30.6 σ12 = 98.2 σ22 = 87.4 n1 = 20 n2 = 25 a. Construct the 95% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT