In: Chemistry
A 50.0 mL sample of 0.0645 M AgNO3(aq) is added to 50.0 mL of 0.100 M NaIO3(aq). Calculate the [Ag+] at equilibrium in the resulting solution. The Ksp value for AgIO3(s) is 3.17 × 10-8.
[Ag+] =____ mol/L
If we add 50 ml of 0.0645 M AgNO3 in 50 ml of 0.1 M NaIO3 the total volume will be 50ml+50ml = 100ml
millimoles of Ag+ in AgNO3 = millmoles of AgNO3 = molarity*volume in ml
= 0.0645M*50ml = 3.225 millimoles
So, the new concentration of Ag+ just after adding the solutions = millimoles/volume in ml
= 3.225 millimoles/100 ml = 0.03225 M
Also,
millimoles of IO3- in NaIO3 = millmoles of NaIO3 = molarity*volume in ml
= 0.1M*50ml = 5 millimoles
So, the new concentration of IO3- just after adding the solutions = millimoles/volume in ml
= 5 millimoles/100 ml = 0.05 M
now we check the ionic product of Ag+ and IO3-
[Ag+]*[IO3-] = 0.03225 * 0.05 = 0.0016125 which is greater than the Ksp value of AgIO3(s)
which is 3.17 × 10-8
So, Ag+ and IO3- will get consumed to form precipitate AgIO3(s)
Ag+ + IO3- -> AgIO3
I 0.03225 0.05 0
C -x -x +x
E 0.03225-x 0.05-x x
K = 1/Ksp = 1/3.17 × 10-8 = 1/[Ag+][IO3-]
So, [Ag+][IO3-] = 3.17 × 10-8
[0.003225-x]*[0.05-x] = 3.17*10-8
0.0016125 - 0.03225x - 0.05x + x2 = 3.17*10-8
x2- 0.08225x + 0.0016125 - 3.17*10-8 = 0
so, x = (0.08225 - sqrt(0.082252 - 4*1*(0.0016125 - 3.17*10-8 ) ))/2
so, x = (0.08225 - 0.01775357147)/2 = 0.03224821426 M
so, molarity of Ag+ at equilibrium = 0.03225 M- 0.03224821426 M
= 0.00000178573 M
= 1.786 * 10-6 M