Question

In: Advanced Math

Prove: Let A be an mxm nonnegative definite matrix with rank(A)=r Then there exists an mxr...

Prove: Let A be an mxm nonnegative definite matrix with rank(A)=r Then there exists an mxr matrix B having rank of r, such that A=BBT

Solutions

Expert Solution

pplease give a thumbs up if you are benefited.


Related Solutions

Let x,y ∈ R satisfy x < y. Prove that there exists a q ∈ Q...
Let x,y ∈ R satisfy x < y. Prove that there exists a q ∈ Q such that x < q < y. Strategy for solving the problem Show that there exists an n ∈ N+ such that 0 < 1/n < y - x. Letting A = {k : Z | k < ny}, where Z denotes the set of all integers, show that A is a non-empty subset of R with an upper bound in R. (Hint: Use...
Let A ∈ Rn×n be symmetric and positive definite and let C ∈ Rn×m. Show:, rank(C^TAC)...
Let A ∈ Rn×n be symmetric and positive definite and let C ∈ Rn×m. Show:, rank(C^TAC) = rank(C),
Let {an} be a bounded sequence. In this question, you will prove that there exists a...
Let {an} be a bounded sequence. In this question, you will prove that there exists a convergent subsequence. Define a crest of the sequence to be a term am that is greater than all subsequent terms. That is, am > an for all n > m (a) Suppose {an} has infinitely many crests. Prove that the crests form a convergent subsequence. (b) Suppose {an} has only finitely many crests. Let an1 be a term with no subsequent crests. Construct a...
Let S ⊆ R and let G be an arbitrary isometry of R . Prove that...
Let S ⊆ R and let G be an arbitrary isometry of R . Prove that the symmetry group of G(S) is isomorphic to the symmetry group of S. Hint: If F is a symmetry of S, what is the corresponding symmetry of G(S)?
a. Let A be a square matrix with integer entries. Prove that if lambda is a...
a. Let A be a square matrix with integer entries. Prove that if lambda is a rational eigenvalue of A then in fact lambda is an integer. b. Prove that the characteristic polynomial of the companion matrix of a monic polynomial f(t) equals f(t).
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let t be a positive integer. Prove that, if there exists a Steiner triple system of...
Let t be a positive integer. Prove that, if there exists a Steiner triple system of index 1 having v varieties, then there exists a Steiner triple system having v^t varieties
Let {an}n∈N be a sequence with lim n→+∞ an = 0. Prove that there exists a...
Let {an}n∈N be a sequence with lim n→+∞ an = 0. Prove that there exists a subsequence {ank }k∈N so that X∞ k=1 |ank | ≤ 8
How to proof: Matrix A have a size of m×n, and the rank is r. How...
How to proof: Matrix A have a size of m×n, and the rank is r. How can we rigorous proof that the dimension of column space are always equal to the dimensional of row space? (I can use many examples to show this work, but how to proof rigorously?)
Let f1(n) and f2(n) be asymptotically nonnegative functions. Using the formal definition of Θ-notation, prove that...
Let f1(n) and f2(n) be asymptotically nonnegative functions. Using the formal definition of Θ-notation, prove that max(f1(n), f2(n)) = Θ(f1(n)+f2(n)).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT