Question

In: Advanced Math

How to proof: Matrix A have a size of m×n, and the rank is r. How...

How to proof:

Matrix A have a size of m×n, and the rank is r. How can we rigorous proof that the dimension of column space are always equal to the dimensional of row space?

(I can use many examples to show this work, but how to proof rigorously?)

Solutions

Expert Solution


Related Solutions

let A be a real matrix of size M*N.,assume that nullity (A^T* A)=r. Find the range...
let A be a real matrix of size M*N.,assume that nullity (A^T* A)=r. Find the range of values that 'r' can take using values of 'M' and 'N'. also find the nullity (A^T)
Let A be a m × n matrix with entries in R. Recall that the row...
Let A be a m × n matrix with entries in R. Recall that the row rank of A means the dimension of the subspace in RN spanned by the rows of A (viewed as vectors in Rn), and the column rank means that of the subspace in Rm spanned by the columns of A (viewed as vectors in Rm). (a) Prove that n = (column rank of A) + dim S, where the set S is the solution space...
Suppose C is a m × n matrix and A is a n × m matrix....
Suppose C is a m × n matrix and A is a n × m matrix. Assume CA = Im (Im is the m × m identity matrix). Consider the n × m system Ax = b. 1. Show that if this system is consistent then the solution is unique. 2. If C = [0 ?5 1 3 0 ?1] and A = [2 ?3   1 ?2    6 10] ,, find x (if it exists) when (a) b =[1...
Let A be an m × n matrix and B be an m × p matrix....
Let A be an m × n matrix and B be an m × p matrix. Let C =[A | B] be an m×(n + p) matrix. (a) Show that R(C) = R(A) + R(B), where R(·) denotes the range of a matrix. (b) Show that rank(C) = rank(A) + rank(B)−dim(R(A)∩R(B)).
can a vector with dimensions R^N and a vector with dimensions R^N+1 be a matrix? and...
can a vector with dimensions R^N and a vector with dimensions R^N+1 be a matrix? and if so what would it dimension size be?
Prove: Let A be an mxm nonnegative definite matrix with rank(A)=r Then there exists an mxr...
Prove: Let A be an mxm nonnegative definite matrix with rank(A)=r Then there exists an mxr matrix B having rank of r, such that A=BBT
Let Un×n be an upper triangular matrix of rank n. If any arithmetic operation takes 1µ...
Let Un×n be an upper triangular matrix of rank n. If any arithmetic operation takes 1µ second on a computing resource, compute the time taken to solve the system Ux = b, assuming it has a unique solution. What would be the time taken if Un×n is lower triangular
Consider an orthogonal matrix Q ∈ R ^m×m and a diagonal matrix with non-zero diagonal elements...
Consider an orthogonal matrix Q ∈ R ^m×m and a diagonal matrix with non-zero diagonal elements D ∈ R^ m×m and answer the True— False questions below. (k) Any vector x ∈ R^m can be written as a linear combination of the columns of D (l) The columns of Q span R^m (m) The columns of D span R^m (n) The columns of Q are a basis for R^m (o) The columns of D are a basis for R^m
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric,...
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric, positive semi-definite, and orthogonal. Prove that A is the identity matrix. (b) Suppose that A satisfies A = −A^T . Prove that if λ ∈ C is an eigenvalue of A, then λ¯ = −λ. From now on, we assume that A is idempotent, i.e. A^2 = A. (c) Prove that if λ is an eigenvalue of A, then λ is equal to 0...
Give a proof, base the proof on the Determinant of a Vandermonde matrix that the INTERPOLATING...
Give a proof, base the proof on the Determinant of a Vandermonde matrix that the INTERPOLATING POLYNOMIAL exist and its unique.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT