In: Statistics and Probability
he mayor of a town has proposed a plan for the construction of an adjoining bridge. A political study took a sample of 1000 voters in the town and found that 57% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is above 53%. Make the decision to reject or fail to reject the null hypothesis at the 0.20 level.
Ho :   p =    0.53  
           
   
H1 :   p >   0.53  
    (Right tail test)      
   
          
           
   
Level of Significance,   α =   
0.20          
       
Number of Items of Interest,   x =  
570          
       
Sample Size,   n =    1000  
           
   
          
           
   
Sample Proportion ,    p̂ = x/n =   
0.5700          
       
          
           
   
Standard Error ,    SE = √( p(1-p)/n ) =   
0.0158          
       
Z Test Statistic = ( p̂-p)/SE = (   0.5700  
-   0.53   ) /   0.0158  
=   2.5344
          
           
   
  
p-Value   =   0.0056 [Excel
function =NORMSDIST(-z)      
       
Decision:   p-value<α =0.20 , reject null
hypothesis       
           
   
There is enough evidence to support the claim
that     the percentage of residents who favor
construction is above 53%