Question

In: Statistics and Probability

The mayor of a town has proposed a plan for the construction of a new community....

The mayor of a town has proposed a plan for the construction of a new community. A political study took a sample of 900 voters in the town and found that 75% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is more than 72%. Testing at the 0.05 level, is there enough evidence to support the strategist's claim?

Solutions

Expert Solution

Solution :

Given that,

= 0.72

1 - = 0.28

n = 900

Level of significance = = 0.05

Point estimate = sample proportion = = 0.75

This a right (One) tailed test.

The null and alternative hypothesis is,

Ho: p = 0.72

Ha: p 0.72

Test statistics

z = ( - ) / *(1-) / n

= ( 0.75 - 0.72) / (0.72*0.28) / 900

= 2.004

P-value = P(Z>z)

= 1 - P(Z <z )

= 1- P(Z < 2.004)

= 0.0225

The p-value is p = 0.0225, and since p = 0.0225 < 0.05, it is concluded that the null hypothesis is rejected.

Conclusion:

It is concluded that the null hypothesis Ho is rejected. Therefore, there is enough evidence to claim that the percentage of residents who favor construction is more than 72%. at the α = 0.05 significance level.


Related Solutions

The mayor of a town has proposed a plan for the construction of a new community....
The mayor of a town has proposed a plan for the construction of a new community. A political study took a sample of 1000 voters in the town and found that 69% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is more than 65%. Testing at the 0.02 level, is there enough evidence to support the strategist's claim? Step 1 of 6: State the...
The mayor of a town has proposed a plan for the construction of a new community....
The mayor of a town has proposed a plan for the construction of a new community. A political study took a sample of 1700 voters in the town and found that 73% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is more than 70%. Testing at the 0.05 level, is there enough evidence to support the strategist's claim? Step 1 of 7: State the...
The mayor of a town has proposed a plan for the construction of an adjoining community....
The mayor of a town has proposed a plan for the construction of an adjoining community. A political study took a sample of 12001200 voters in the town and found that 26%26% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is not equal to 29%29%. Testing at the 0.050.05 level, is there enough evidence to support the strategist's claim? Step 1 of 7: State...
The mayor of a town has proposed a plan for the construction of an adjoining community....
The mayor of a town has proposed a plan for the construction of an adjoining community. A political study took a sample of 1400 1400 voters in the town and found that 61% 61 % of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is not equal to 64% 64 % . Testing at the 0.01 0.01 level, is there enough evidence to support the...
The mayor of a town has proposed a plan for the construction of an adjoining community....
The mayor of a town has proposed a plan for the construction of an adjoining community. A political study took a sample of 1200 voters in the town and found that 45% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is not equal 48%. Testing at the 0.01 level, is there enough evidence to support the strategist's claim? Step 1 of 7 : State...
The mayor of a town has proposed a plan for the construction of an adjoining community....
The mayor of a town has proposed a plan for the construction of an adjoining community. A political study took a sample of 1400 voters in the town and found that 61 % of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is not equal to 64 % . Testing at the  0.01 level, is there enough evidence to support the strategist's claim? State the null...
The mayor of a town has proposed a plan for the annexation of a new community....
The mayor of a town has proposed a plan for the annexation of a new community. A political study took a sample of 800 voters in the town and found that 60% of the residents favored annexation. Using the data, a political strategist wants to test the claim that the percentage of residents who favor annexation is more than 55%. Determine the P-value of the test statistic. Round your answer to four decimal places.
The mayor of a town has proposed a plan for the annexation of a new community....
The mayor of a town has proposed a plan for the annexation of a new community. A political study took a sample of 1600 voters in the town and found that 50% of the residents favored annexation. Using the data, a political strategist wants to test the claim that the percentage of residents who favor annexation is less than 53%. Testing at the 0.02 level, is there enough evidence to support the strategist's claim? Step 4 of 7 :   Determine...
The mayor of a town has proposed a plan for the annexation of a new community....
The mayor of a town has proposed a plan for the annexation of a new community. A political study took a sample of 900 voters in the town and found that 40% of the residents favored annexation. Using the data, a political strategist wants to test the claim that the percentage of residents who favor annexation is more than 36%. Testing at the 0.05 level, is there enough evidence to support the strategist's claim? Step 1 of 6 : State...
The mayor of a town has proposed a plan for the annexation of a new community....
The mayor of a town has proposed a plan for the annexation of a new community. A political study took a sample of 1600 voters in the town and found that 68% of the residents favored annexation. Using the data, a political strategist wants to test the claim that the percentage of residents who favor annexation is over 65% . Determine the P-value of the test statistic. Round your answer to four decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT