Question

In: Advanced Math

a) 8t*dydt+y=t^3, t>0 Put the problem in standard form. Then find the integrating factor, μ(t)=________ b)...

a) 8t*dydt+y=t^3, t>0
Put the problem in standard form.
Then find the integrating factor, μ(t)=________

b) 5(sin(t)dydt+cos(t)y)=cos(t)sin6(t), for 0<t<π and y(π/2)=18.

Put the problem in standard form.

find y(t)=___________

c)   13(t+1)dydt−9y=36t, for t>−1 with y(0)=18
Put the problem in standard form.

find y(t)=_______

d) x^2−4xy+x*dydx=0

Put the problem in standard form.

Find the integrating factor, ρ(x)=

Solutions

Expert Solution



Related Solutions

Find the solution of y″+8y′=1024sin(8t)+640cos(8t) y(0)=4 and y'(0)=3 y=?
Find the solution of y″+8y′=1024sin(8t)+640cos(8t) y(0)=4 and y'(0)=3 y=?
1. Find the solution of y" + 8y' = 896sin(8t) + 256cos(8t) with y(0) = 9...
1. Find the solution of y" + 8y' = 896sin(8t) + 256cos(8t) with y(0) = 9 and y'(0) = 9 y = ? 2. Find y as a function of x if y"' - 9y" + 18y' = 20e^x , y(0) = 30 , y'(0) = 23 , y"(0) = 17 y(x) = ?
y′′+12y′+35y=8cos(8t+0) y(0) = 14; y'(0) = 3 find the particular, complimentary, and total solution. I have...
y′′+12y′+35y=8cos(8t+0) y(0) = 14; y'(0) = 3 find the particular, complimentary, and total solution. I have found the complimentary to be. C1e^-5t + C2e^-7t I'm having trouble finding the particular, so I can't get to the total solution
if y(t) is the solution of y′′+2y′+y=δ(t−3),y(0)=0,y′(0)=0 the find y(4)
if y(t) is the solution of y′′+2y′+y=δ(t−3),y(0)=0,y′(0)=0 the find y(4)
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
1) Find y as a function of t if 9y′′+24y′+32y=0, y(0)=5,y′(0)=8. y(t)= 2) Find y as...
1) Find y as a function of t if 9y′′+24y′+32y=0, y(0)=5,y′(0)=8. y(t)= 2) Find y as a function of x if y′′′+16y′=0, y(0)=−5,  y′(0)=−32,  y′′(0)=−32. y(x)= 3) Find y as a function of t if 9y′′−12y′+40y=0, y(1)=5,y′(1)=9. y=
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT