In: Finance
Consider a loan of $225,000 at nominal interest rate of 6.25% for 15 years. How much of the payment during the first year goes towards interest? Assume monthly payments.
| 
 $19,929  | 
||
| 
 $13,509  | 
||
| 
 $13,987  | 
||
| 
 $13,798  | 
$13,798
Working:
| Step-1:Calculation of monthly payment | |||||||||||||
| Monthly payment | = | Loan amount /Present value of annuity of 1 | |||||||||||
| = | $ 2,25,000 | / | 116.631532 | ||||||||||
| = | $ 1,929.15 | ||||||||||||
| Working; | |||||||||||||
| Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||||
| = | (1-(1+0.005208)^-180)/0.005208 | i | 6.25%/12 | = | 0.005208 | ||||||||
| = | 116.6315322 | n | 15*12 | = | 180 | ||||||||
| Step-2:Preparation of first year amortization | |||||||||||||
| Months | Beginning loan | Monthly payment | Monthly interest | Reduction in principal | Ending Loan amount | ||||||||
| a | b | c=a*6.25%*1/12 | d=b-c | e=a-d | |||||||||
| 1 | $ 2,25,000 | $ 1,929 | $ 1,172 | $ 757 | $ 2,24,242.72 | ||||||||
| 2 | 2,24,243 | 1,929 | 1,168 | 761 | 2,23,482 | ||||||||
| 3 | 2,23,482 | 1,929 | 1,164 | 765 | 2,22,716 | ||||||||
| 4 | 2,22,716 | 1,929 | 1,160 | 769 | 2,21,947 | ||||||||
| 5 | 2,21,947 | 1,929 | 1,156 | 773 | 2,21,174 | ||||||||
| 6 | 2,21,174 | 1,929 | 1,152 | 777 | 2,20,397 | ||||||||
| 7 | 2,20,397 | 1,929 | 1,148 | 781 | 2,19,616 | ||||||||
| 8 | 2,19,616 | 1,929 | 1,144 | 785 | 2,18,830 | ||||||||
| 9 | 2,18,830 | 1,929 | 1,140 | 789 | 2,18,041 | ||||||||
| 10 | 2,18,041 | 1,929 | 1,136 | 794 | 2,17,247 | ||||||||
| 11 | 2,17,247 | 1,929 | 1,131 | 798 | 2,16,450 | ||||||||
| 12 | 2,16,450 | 1,929 | 1,127 | 802 | 2,15,648 | ||||||||
| Total | 23,150 | 13,798 | 9,352 | ||||||||||
| Thus, | |||||||||||||
| Total interest payment in the year 1 is | $ 13,798 | ||||||||||||