In: Finance
A loan is amortized over five years with monthly payments at an annual nominal interest rate of 6% compounded monthly.
The first payment is 1000 and is to be paid one month from the date of the loan.
Each succeeding monthly payment will be 3% lower than the prior payment.
Calculate the outstanding loan balance immediately after the 40th payment is made.
Annual nominal interest rate = 6% compounded monthly
So monthly compounding rate = 6% / 12 = 0.5% = 0.005
First payment is made after 1 month from the date of loan (Payments are made on end of period, EOP)
Loan amount is the present value of all the monthly payments.
Here discount factor, DF for each period is calculated as:
Below is the schedule with Period, Monthly payments, Discount Factor, PV(PMT) :
Year | PMT | DF | PV(PMT) = DF * PMT |
1 | 1000 | 0.995025 | 995.0249 |
2 | 970.00 | 0.990075 | 960.3723 |
3 | 940.90 | 0.985149 | 926.9265 |
4 | 912.67 | 0.980248 | 894.6454 |
5 | 885.29 | 0.975371 | 863.4886 |
6 | 858.73 | 0.970518 | 833.4169 |
7 | 832.97 | 0.965690 | 804.3924 |
8 | 807.98 | 0.960885 | 776.3788 |
9 | 783.74 | 0.956105 | 749.3407 |
10 | 760.23 | 0.951348 | 723.2443 |
11 | 737.42 | 0.946615 | 698.0566 |
12 | 715.30 | 0.941905 | 673.7462 |
13 | 693.84 | 0.937219 | 650.2824 |
14 | 673.03 | 0.932556 | 627.6358 |
15 | 652.84 | 0.927917 | 605.7778 |
16 | 633.25 | 0.923300 | 584.6811 |
17 | 614.25 | 0.918707 | 564.319 |
18 | 595.83 | 0.914136 | 544.6661 |
19 | 577.95 | 0.909588 | 525.6977 |
20 | 560.61 | 0.905063 | 507.3898 |
21 | 543.79 | 0.900560 | 489.7195 |
22 | 527.48 | 0.896080 | 472.6646 |
23 | 511.66 | 0.891622 | 456.2036 |
24 | 496.31 | 0.887186 | 440.3159 |
25 | 481.42 | 0.882772 | 424.9816 |
26 | 466.97 | 0.878380 | 410.1812 |
27 | 452.97 | 0.874010 | 395.8963 |
28 | 439.38 | 0.869662 | 382.1088 |
29 | 426.20 | 0.865335 | 368.8016 |
30 | 413.41 | 0.861030 | 355.9577 |
31 | 401.01 | 0.856746 | 343.5612 |
32 | 388.98 | 0.852484 | 331.5964 |
33 | 377.31 | 0.848242 | 320.0483 |
34 | 365.99 | 0.844022 | 308.9023 |
35 | 355.01 | 0.839823 | 298.1445 |
36 | 344.36 | 0.835645 | 287.7614 |
37 | 334.03 | 0.831487 | 277.7398 |
38 | 324.01 | 0.827351 | 268.0673 |
39 | 314.29 | 0.823235 | 258.7316 |
40 | 304.86 | 0.819139 | 249.7211 |
41 | 295.71 | 0.815064 | 241.0243 |
42 | 286.84 | 0.811009 | 232.6304 |
43 | 278.24 | 0.806974 | 224.5289 |
44 | 269.89 | 0.802959 | 216.7095 |
45 | 261.79 | 0.798964 | 209.1624 |
46 | 253.94 | 0.794989 | 201.8781 |
47 | 246.32 | 0.791034 | 194.8475 |
48 | 238.93 | 0.787098 | 188.0618 |
49 | 231.76 | 0.783182 | 181.5124 |
50 | 224.81 | 0.779286 | 175.191 |
51 | 218.07 | 0.775409 | 169.0899 |
52 | 211.52 | 0.771551 | 163.2012 |
53 | 205.18 | 0.767713 | 157.5175 |
54 | 199.02 | 0.763893 | 152.0319 |
55 | 193.05 | 0.760093 | 146.7372 |
56 | 187.26 | 0.756311 | 141.627 |
57 | 181.64 | 0.752548 | 136.6947 |
58 | 176.19 | 0.748804 | 131.9342 |
59 | 170.91 | 0.745079 | 127.3394 |
60 | 165.78 | 0.741372 | 122.9047 |
27973.11 | 25165.21 |
After 40th payment, the outstanding loan is:
L(40) = $241.0243 + $232.6304 + ....+ 127.3394 + 122.9047 = $3,514.6238
Answer = $3,514.62