In: Statistics and Probability
Below are 50 random numbers taken from a random number generator.
0.534 | 0.401 | 0.401 | 0.445 | 0.445 |
0.125 | 0.094 | 0.094 | 0.104 | 0.104 |
0.345 | 0.259 | 0.259 | 0.288 | 0.288 |
0.785 | 0.589 | 0.589 | 0.654 | 0.654 |
0.975 | 0.731 | 0.731 | 0.813 | 0.813 |
0.834 | 0.626 | 0.626 | 0.695 | 0.695 |
0.683 | 0.512 | 0.512 | 0.569 | 0.569 |
0.322 | 0.242 | 0.242 | 0.268 | 0.268 |
0.526 | 0.395 | 0.395 | 0.438 | 0.438 |
0.234 | 0.176 | 0.177 | 0.198 | 0.196 |
a) Using 5 class intervals, determine the computed chi-square value. Answer in 1 decimal place.
b) What is the critical value of chi-square at 0.05 level of significance. Answer in 2 decimal places.
c) Are the random numbers uniform? Answer YES or NO.
Before we start working on the data, we convert random numbers into integers by multiplying each one
by 1000. ( For better readability of data )
We get following data;
534 | 401 | 401 | 445 | 445 |
125 | 94 | 94 | 104 | 104 |
345 | 259 | 259 | 288 | 288 |
785 | 589 | 589 | 654 | 654 |
975 | 731 | 731 | 813 | 813 |
834 | 626 | 626 | 695 | 695 |
683 | 512 | 512 | 569 | 569 |
322 | 242 | 242 | 268 | 268 |
526 | 395 | 395 | 438 | 438 |
234 | 176 | 177 | 198 | 196 |
a)
Step-1 : Construction of Frequency table :
Minimum data value = 94
Maximum data value = 975
So, we create 5 class intervals as below; Minimum value should be covered in the first class and intervals should multiples of 10.
Class |
0-100 |
100-350 |
350-600 |
600-850 |
850-1100 |
By using Tally mark for each above class intervals , we get the following Frequency table;
Class | Frequency |
0-100 | 2 |
100-350 | 18 |
350-600 | 16 |
600-850 | 13 |
850-1100 | 1 |
Total | 50 |
Step-2 : Calculation Chi-square value:
We will use the following Chi-square formula :
where E = expected values = 50/5 = 10 for each class interval. ( ie: Expected value is the average )
Class | Observed values (O) | Expected value (E) | ( O-E)^2 | [ ( O-E)^2] / E |
0-100 | 2 | 10 | 64 | 6.4 |
100-350 | 18 | 10 | 64 | 6.4 |
350-600 | 16 | 10 | 36 | 3.6 |
600-850 | 13 | 10 | 9 | 0.9 |
850-1100 | 1 | 10 | 81 | 8.1 |
Total | 50 | 50 | Chi-square==> | 25.4 |
b)
Critical value of Chi-square for degrees of freedom = (5-1) = 4 and alpha = 0.05.
Critical value of Chi-square = 9.49 ( Refer below table )
c) Answer : No
Explanation:
Since Chi-square value=25.4 > Chi-square critical=9.49,
It implies that Reject the null hypothesis that "Random numbers are Uniform".
## End of answer