Question

In: Economics

A firm’s production function is given by Q(L,K)=5L+2k. Firm’s budget is 200,000 dollars. How much labor...

  1. A firm’s production function is given by Q(L,K)=5L+2k. Firm’s budget is 200,000 dollars. How much labor and capital should this firm optimally hire assuming that price of labor is 2 dollars per unit and price of capital is 5 dollars per unit? Does this production function satisfy the law of diminishing returns in the short run? What about decreasing returns to scale?

Solutions

Expert Solution

Q = 5L + 2K

(a)

A linear production function signifies and L and K are substitutes and isoquants are linear, touching both axes. Optimal input mix involves use of only one input.

Total cost (TC) ($) = wL + rK

200,000 = 2L + 5K

When L = 0, K = 200,000/5 = 40,000 and Q = 5 x 0 + 2 x 40,000 = 80,000

When K = 0, L = 200,000/2 = 100,000 and Q = 2 x 100,000 + 5 x 0 = 200,000

Since output is higher when L = 100,000 and K = 0, this is the optimal inpit mix.

(b)

MPL = Q/L = 5

MPK = Q/K = 2

Since MPL is independent of L, and MPK is independent of K, diminishing returns do not exist.

(c)

Doubling both inputs gives rise to the new production function:

Q1 = 5 x (2L) + 2 x (2K) = 10L + 4K = 2 x (5L + 2K) = 2 x Q

Q1/Q = 2

Since doubling both inputs exactly doubles output, there is constant returns to scale (and not decreasing returns).


Related Solutions

Suppose a firm’s production function is given by Q=F(K,L) . Describe the differences between the firm’s...
Suppose a firm’s production function is given by Q=F(K,L) . Describe the differences between the firm’s demand for labour in the short-run and long-run.
2. A firm’s production function is given by q= L^1/2+ K. The price of labour is...
2. A firm’s production function is given by q= L^1/2+ K. The price of labour is fixed at w = 1, and the price of capital is fixed at r = 8. a. Find the firm’s marginal rate of technical substitution. b. Suppose both labour and capital can be varied by the firm, and that the firm wishes to produce q units of output. Use the answer to (a) to find the cost-minimising amounts of labour and capital (as functions...
5. Leontief...again Suppose that a firm’s fixed proportion production function is given by q(k, l) =...
5. Leontief...again Suppose that a firm’s fixed proportion production function is given by q(k, l) = min(5k, l) (a) Calculate the firm’s long-run total, average, and marginal cost functions. (b) Suppose that k is fixed at 10 in the short run. Calculate the firm’s short-run total, average, and marginal cost functions. (c) Suppose v = 1 (cost of capital) and w = 3 (cost of labor). Calculate this firm’s long-run and short-run average and marginal cost curves.
3. Consider the production function Q = K2L , where L is labor and K is...
3. Consider the production function Q = K2L , where L is labor and K is capital. a.[4] What is the Marginal Product of Capital for this production function? Is it increasing, decreasing, or constant? Briefly explain or show how you arrived at your answer. b.[4] Does this production function exhibit increasing, constant or decreasing returns to scale? Briefly explain or show how you arrived at your answer. c.[5] If the firm has capital fixed at 15 units in the...
Consider the production function Q = K2L , where L is labor and K is capital....
Consider the production function Q = K2L , where L is labor and K is capital. a.[4] What is the Marginal Product of Capital for this production function? Is it increasing, decreasing, or constant? Briefly explain or show how you arrived at your answer. b.[4] Does this production function exhibit increasing, constant or decreasing returns to scale? Briefly explain or show how you arrived at your answer. c.[5] If the firm has capital fixed at 15 units in the short...
Consider the firm with production function given by q = f ( L , K )...
Consider the firm with production function given by q = f ( L , K ) = L ^(1/4) K^(1/4). If w = r = 4, what is the change in the producer surplus when the price increases from $16 to $32? (round your answer to one decimal place if necessary)
Consider the production function q=5L^(0.3) K^(0.5) The marginal product of labor is MPL=1.5L^(-0.7)K^(0.5) . Assume that...
Consider the production function q=5L^(0.3) K^(0.5) The marginal product of labor is MPL=1.5L^(-0.7)K^(0.5) . Assume that capital is fixed at in the short run. Derive the formula for the short-run total product and graph it. (Hint: Substitute in the production function Derive the formula for the short-run average product of labor (Hint: Divide the short-run total product by)
Suppose the production function of a firm is given by q=L^1/4 K^1/4. The prices of labor...
Suppose the production function of a firm is given by q=L^1/4 K^1/4. The prices of labor and capital are given by and w=10 and r=20, respectively. Write down the firm’s cost minimization problem. What returns to scale does the production function exhibit? Explain. What is the Marginal Rate of Technical Substitution  (MRTS) between capital and labor? What is the optimal capital to labor ratio? Show your work.
1a. The production function for computers is q(K,L) = 7K1/3L2 where K=capital and L=labor. A firm...
1a. The production function for computers is q(K,L) = 7K1/3L2 where K=capital and L=labor. A firm has two units of capital (K=2) which it cannot change. A manager wants to know the marginal productivity of labor if the firm goes from 2 to 3 workers. Calculate the marginal productivity of labor for the manager. Explain your answer carefully to the manager who is not familiar with what the marginal productivity of labor means. 1b. Last year the price of bread...
3. Frisbees are produced according to the production function q = 2K+L where q =output of...
3. Frisbees are produced according to the production function q = 2K+L where q =output of frisbees per hour, K =capital input per hour, L =labor input per hour. a) If K = 10, how much L is needed to produce 100 frisbees per hour? b) If K = 25, how much L is needed to produce 100 frisbees per hour? c) Graph the q = 100 isoquant. Indicate the points on that isoquant deÖned in part a and part...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT